计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 230-237.doi: 10.11896/jsjkx.220300008

• 人工智能 • 上一篇    下一篇

基于情感知识的双通道图卷积网络的方面级情感分析

阳影1, 张凡1,2, 李天瑞1,2,3   

  1. 1 西南交通大学计算机与人工智能学院 成都 611756
    2 四川省制造业产业链协同与信息化支撑技术重点实验室 成都 611756
    3 综合交通大数据应用技术国家工程实验室 成都 611756
  • 收稿日期:2022-03-01 修回日期:2022-09-01 出版日期:2023-05-15 发布日期:2023-05-06
  • 通讯作者: 李天瑞(trli@swjtu.edu.cn)
  • 作者简介:(G_yangying@163.com)
  • 基金资助:
    国家自然科学基金(62176221)

Aspect-based Sentiment Analysis Based on Dual-channel Graph Convolutional Network with Sentiment Knowledge

YANG Ying1, ZHANG Fan1,2, LI Tianrui1,2,3   

  1. 1 School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China
    2 Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province,Chengdu 611756,China
    3 National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Chengdu 611756,China
  • Received:2022-03-01 Revised:2022-09-01 Online:2023-05-15 Published:2023-05-06
  • About author:YANG Ying,born in 1997,postgra-duate,is a member of China Computer Federation.Her main research interests include sentiment analysis and natural language processing.
    LI Tianrui,born in 1969,Ph.D,professor,Ph.D supervisor,is a distinguished member of China Computer Federation.His main research interests include big data intelligence,rough sets,granular computing.
  • Supported by:
    National Natural Science Foundation of China(62176221).

摘要: 方面级情感分析是一项细粒度情感分析任务,其目标是对句子中给定的方面词进行情感极性分类。当前的情感分类模型大多在依存句法树上构建图神经网络,从依存句法树上学习方面词与上下文之间的信息,缺乏对句子中情感知识的挖掘。针对这个问题,文中提出了一种基于情感知识的双通道图卷积网络的情感分类模型(Dual-channel Graph Convolutional Network with Sentiment Knowledge,SKDGCN)。该模型由情感增强的依存图卷积网络(Sentiment-enhanced Dependency Graph Convolutional Network,SDGCN)和注意力图卷积网络(Attention Graph Convolutional Network,AGCN)组成,两个图卷积网络分别学习方面词与上下文词的句法依赖关系和语义关系。具体地,SDGCN在句法依存树上融合SenticNet中的情感知识以增强句子的依赖关系,使得模型既考虑了上下文词与方面词的句法关系,也考虑了上下文中意见词与方面词的情感信息;AGCN使用注意力机制学习方面词与句子中上下文的语义相关性;最后使两个图卷积网络交互学习各自的信息进行情感分类。实验结果表明,该模型在多个公开数据集上表现优异,并通过消融实验验证了各个模块的有效性。

关键词: 方面级情感分析, 情感知识, 依存关系, 图卷积网络, 注意力机制

Abstract: Aspect-based sentiment analysis is a fine-grained sentiment analysis task whose goal is to classify the sentiment polarity of the given aspect terms in a sentence.Most of the current sentiment classification models build a graph neural network on the dependency syntax tree,and learn the information between the aspect terms and the context from the dependency syntax tree,and lack the mining of sentiment knowledge in the sentence.To solve this problem,this paper proposes a sentiment classification model based on dual-channel graph convolutional network with sentiment knowledge.The model consists of a sentiment-enhanced dependency graph convolutional network(SDGCN) and an attention graph convolutional network(AGCN),which learn the syntactic dependencies and semantic relations of aspect terms and context words,respectively.Specifically,SDGCN incorporates sentiment knowledge from SenticNet on syntactic dependencies to enhance sentence dependencies,so that the model considers the syntactic relationship between context and aspects,together with the sentiment information between opinion words in the context and aspect terms.The attention mechanism is used by AGCN to learn the semantic relevance between aspect terms and the context in the sentence.Finally,the two graph convolution networks learn their own information interactively for sentiment classification.Experimental results show that the proposed model performs well on multiple public datasets,and ablation experiments verify the effectiveness of each module.

Key words: Aspect-based sentiment analysis, Sentiment knowledge, Dependencies, Graph convolutional networks, Attention mecha-nism

中图分类号: 

  • TP391
[1]HAN Z M,LI M Q,LIU W,et al.Survey of Studies on Aspect-Based Opinion Mining of Internet[J].Journal of Software,2018,29(2):417-441.
[2]LIU B.Sentiment analysis and opinion mining[J].SynthesisLectures on Human Language Technologies,2012,5(1):1-167.
[3]BAHDANAU D,CHO K H,BENGIO Y.Neural machine translation by jointly learning to align and translate[C]//3rd International Conference on Learning Representations.2015.
[4]ZHANG C,LI Q,SONG D.Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:4568-4578.
[5]SUN K,ZHANG R,MENSAH S,et al.Aspect-level sentimentanalysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:5679-5688.
[6]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:3540-3549.
[7]HUANG B,CARLEY K M.Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Confe-rence on Natural Language Processing.2019:5469-5477.
[8]WANG K,SHEN W,YANG Y,et al.Relational Graph Attention Network for Aspect-based Sentiment Analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3229-3238.
[9]TIAN H,GAO C,XIAO X,et al.SKEP:Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computa-tional Linguistics.2020:4067-4076.
[10]ZHOU J,HUANG J X,HU Q V,et al.Sk-gcn:Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J].Knowledge-Based Systems,2020,205:106292.
[11]CAMBRIA E,PORIA S,HAZARIKA D,et al.SenticNet 5:Discovering conceptual primitives for sentiment analysis by means of context embeddings[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2018:1795-1802.
[12]MA Y,PENG H,CAMBRIA E.Targeted aspect-based senti-ment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:5876-5883.
[13]TANG H,JI D,LI C,et al.Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:6578-6588.
[14]ZHANG Y,LI T R.Review of comment-oriented aspect-based sentiment analysis[J].Computer Science,2020,47(6):194-200.
[15]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536.
[16]HOCHREITER S,SCHMIDHUBER J.Long short-term memo-ry[J].Neural Computation,1997,9(8):1735-1780.
[17]TANG D,QIN B,FENG X,et al.Effective LSTMs for Target-Dependent Sentiment Classification[C]//Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers.2016:3298-3307.
[18]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTMfor aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615.
[19]MA D,LI S,ZHANG X,et al.Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.2017:4068-4074.
[20]FAN F,FENG Y,ZHAO D.Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:3433-3442.
[21]SONG Y,WANG J,JIANG T,et al.Attentional encoder network for targeted sentiment classification[J].arXiv:1902.09314,2019.
[22]DI CARO L,GRELLA M.Sentiment analysis via dependencyparsing[J].Computer Standards & Interfaces,2013,35(5):442-453.
[23]HAN H,WU Y H,QIN X Y.An Interactive Graph AttentionNetworks Model for Aspect-level Sentiment Analysis[J].Journal of Electronics & Information Technology,2021,43(11):3282-3290.
[24]WANG R Y,TAO Z Y,ZHAO R J,et al.Multi-interactionGraph Convolutional Networks for Aspect-level Sentiment Analysis[J].Journal of Electronics & Information Technology,2022,44(3):1111-1118.
[25]TIAN Y,CHEN G,SONG Y.Aspect-based Sentiment Analysis with Type-aware Graph Convolutional Networks and Layer Ensemble[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:2910-2922.
[26]HOU X,HUANG J,WANG G,et al.Selective Attention Based Graph Convolutional Networks for Aspect-Level Sentiment Classification[C]//Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing.2021:83-93.
[27]HOU X,QI P,WANG G,et al.Graph Ensemble Learning over Multiple Dependency Trees for Aspect-level Sentiment Classification[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:2884-2894.
[28]BIAN X,FENG C,AHMAD A,et al.Targeted Sentiment Classification with Knowledge Powered Attention Network[C]//2019 IEEE 31st International Conference on Tools with Artificial Intelligence.IEEE,2019:1073-1080.
[29]HAN H,HAO J,ZHANG Q,et al.Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis[J/OL].Journal of Frontiers of Computer Science and Technology,2022:1-11.http://fcst.ceaj.org/CN/10.3778/j.issn.1673-9418.2108082.
[30]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing.2014:1532-1543.
[31]LIN Z,FENG M,SANTOS C N,et al.A structured self-attentive sentence embedding[C]//International Conference on Learning Representations.2017:1-15.
[32]LIANG B,SU H,GUI L,et al.Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J].Knowledge-Based Systems,2021,235:107643.
[33]PONTIKI M,GALANIS D,PAVLOPOULOS J,et al.SemEval-2014Task 4:Aspect Based Sentiment Analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation.2014:27-35.
[34]DONG L,WEI F,TAN C,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(volume 2:Short papers).2014:49-54.
[35]CHEN P,SUN Z,BING L,et al.Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methodsin Natural Language Processing.2017:452-461.
[36]LIU J,LIU P,ZHU Z,et al.Graph Convolutional Networkswith Bidirectional Attention for Aspect-Based Sentiment Classification[J].Applied Sciences,2021,11(4):1528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!