计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220200112-7.doi: 10.11896/jsjkx.220200112
李晗1, 侯守璐1, 佟强1,2, 谌彤童3, 杨启民1, 刘秀磊1,2
LI Han1, HOU Shoulu1, TONG Qiang1,2, CHEN Tongtong3, YANG Qimin1, LIU Xiulei1,2
摘要: 武器领域的非结构化文本数据通常十分复杂,单句内可能存在“一武器与多个武器相关联”或“两武器之间存在多种关系”等情况,为此提出基于膨胀卷积神经网络和门控线性单元的实体关系抽取方法以处理该类型数据中存在的关系重叠问题。该方法将拼接了词向量和位置向量的句子编码向量传入带有门控机制的膨胀卷积神经网络模型,引入可以快速抽取句内命名实体特征信息的自注意力机制,通过分层次的序列标注方式识别出句中全部实体以及每个主实体对应的所有关系和客实体,进而生成武器领域实体关系三元组。实验结果显示,该方法在自行标注的武器领域数据集上的F1值达81.1%,具备一定的实体关系抽取能力,在不同重叠类型下的F1值均高于78%,能够解决非结构化数据的关系重叠问题,同时在公开数据集NYT上也有良好的表现。
中图分类号:
[1]ZENG X,ZENG D,HE S,et al.Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Melbourne,Australia:Association for Computational Linguistics,2018:506-514. [2]WEI Z,SU J,WANG Y,et al.A Novel Cascade Binary Tagging Framework for Relational Triple Extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2020:1476-1488. [3]WANG Y,YU B,ZHANG Y,et al.TPLinker:Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking[J].arXiv:2010.13415,2020. [4]XU J,ZHANG Z X,WU Z X.Review on Techniques of Entity Relation Extraction[J].New Technology of Library and Information Service,2008,24(8):18-23. [5]CHEN H W,ZHANG X Y,WANG T.Research on Named Entity Recognition[J].Computer Science,2005,32(4):44-48. [6]TRAN K M,BISK Y,VASWANI A,et al.Unsupervised Neural Hidden Markov Models[C]//Proceedings of the Workshop on Structured Prediction for NLP.2016:63-71. [7]MA X,HOVY E.End-to-end Sequence Labeling via Bi-direc-tional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Vo-lume 1:Long Papers).Berlin,Association for Computational Linguistics,2016:1064-1074. [8]LI X,SUN X,MENG Y,et al.Dice Loss for Data-imbalanced NLP Tasks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2020:465-476. [9]ZHONG Z,CHEN D.A Frustratingly Easy Approach for Entity and Relation Extraction[C]//Proceedings of the 2021 Confe-rence of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Association for Computational Linguistics,2021:50-61. [10]LI X,FENG J,MENG Y,et al.A Unified MRC Framework for Named Entity Recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2020:5849-5859. [11]WANG X,JIANG Y,BACH N,et al.Automated Concatenation of Embeddings for Structured Prediction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Long Papers).Association for Computational Linguistics,2021:2643-2660. [12]ZHOU W,CHEN M.Learning from Noisy Labels for Entity-Centric Information Extraction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Proces-sing.Association for Computational Linguistics,2021:5381-5392. [13]SCHWETER S,AKBIK A.FLERT:Document-Level Features for Named Entity Recognition[J].arXiv:2011.06993,2020. [14]YE D,LIN Y,SUN M.Pack Together:Entity and Relation Extraction with Levitated Marker[J].arXiv:2109.06067,2021. [15]E H H,ZHANG W J,XIAO S Q,et al.Survey of Entity Relationship Extraction Based on Deep Learning[J].Journal of Software,2019,30(6):1793-1818. [16]SANTOS C N,XIANG B,ZHOU B.Classifying Relations byRanking with Convolutional Neural Networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Long Papers).Beijing:Association for Computational Linguistics,2015:626-634. [17]WANG L,CAO Z,MELO G,et al.Relation Classification via Multi-Level Attention CNNs[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Berlin:Association for ComputationalLinguistics,2016:1298-1307. [18]WANG H,TAN M,YU M,et al.Extracting Multiple-Relations in One-Pass with Pre-Trained Transformers[C]//Proceedings of the 57th Annual Meeting of the Association for ComputationalLinguistics.Florence:Association for Computational Linguistics,2019:1371-1377. [19]COHEN A D,ROSENMAN S,GOLDBERG Y.Relation Classification as Two-way Span-Prediction[J].arXiv:2010.04829,2020. [20]MIWA M,BANSAL M.End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Berlin:Association for Computational Linguistics,2016:1105-1116. [21]ZHENG S,WANG F,BAO H,et al.Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Vancouver:Association for Computational Linguistics,2017:1227-1236. [22]BEKOULIS G,DELEU J,DEMEESTER T,et al.Joint entity recognition and relation extraction as a multi-head selection problem[J].Expert Systems with Applications,2018,114:34-45. [23]SUI D,CHEN Y,LIU K,et al.Joint Entity and Relation Extraction with Set Prediction Networks[J].arXiv:2011.01675,2020. [24]HUGUET CABOT P L,NAVIGLI R.REBEL:Relation Extraction By End-to-end Language generation[C]//Findings of the Association for Computational Linguistics:EMNLP 2021.Punta Cana:Association for Computational Linguistics,2021:2370-2381. [25]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient Estima-tion of Word Representations in Vector Space[J].arXiv:1301.3781,2013. [26]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6000-6010. [27]RIEDEL S,YAO L,MCCALLUM A.Modeling Relations and Their Mentions without Labeled Text[C]//Machine Learning and Knowledge Discovery in Databases.Berlin:Springer,2010:148-163. [28]FU T J,LI P H,MA W Y.GraphRel:Modeling Text as Relational Graphs for Joint Entity and Relation Extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Florence:Association for Computational Linguistics,2019:1409-1418. |
|