计算机科学 ›› 2023, Vol. 50 ›› Issue (8): 157-162.doi: 10.11896/jsjkx.220700161
丁肖摇1, 周刚1,2, 卢记仓1,2, 陈静1,2
DING Xiaoyao1, ZHOU Gang1,2, LU Jicang1,2, CHEN Jing1,2
摘要: 文档级关系抽取是自然语言处理领域研究的热点和难点问题,基于图的模型是当前文档级关系抽取的主流方法之一,该类方法虽然能有效解决实体节点之间的长距离依赖问题,但其在构造节点时往往未充分考虑句子上下文、文档主题、实体对距离、实体对相似度等额外信息,导致关系抽取的性能较低。针对该问题,提出了基于增强实体表示的文档级关系抽取模型。首先,将原始文档作为输入,构建基础文档图结构;然后,通过图神经网络传播机制聚合邻接点的信息,将与实体关系预测相关的句子上下文、主题信息融入基础文档图的实体节点表示中,从而获得增强的实体节点表示;最后,利用增强后实体节点的图模型对实体关系进行预测。实验结果表明,所提模型在文档级关系抽取任务中的性能优于已有模型,且可解释性更好。
中图分类号:
[1]SPEER R,CHIN J,HAVASI C.Conceptnet 5.5:An open multilingual graph of general knowledge[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.2017:4444-4451. [2]YU M,YIN W,HASAN K S,et al.Improved neural relation detection for knowledge base question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computa-tional Linguistics.2017:571-581. [3]KADRY A,DIETZ L.Open relation extraction for support passage retrieval:merit and open issues[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:1149-1152. [4]MIWA M,BANSAL M.End-to-end relation extraction usinglstms on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:1105-1116. [5]ZHANG Y,QI P,MANNING C D.Graph convolution overpruned dependency trees improves relation extraction[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:2205-2215. [6]GUO Z,ZHANG Y,LU W.Attention guided graph convolutional networks for relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:241-251. [7]YAO Y,YE D,LI P,et al.DocRED:Alarge-scale document-level relation extraction dataset [C]//Proceedings of the 57th Conference of the Association for Computational Linguistics.2019:764-777. [8]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Euro-pean Semantic Web Conference.2018:593-607. [9]CHRISTOPOULOU F,MIWA M,ANANIADOU S.Connec-ting the dots:Document-level neural relation extraction with edge-oriented graphs[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:4924-4935. [10]NAN G,GUO Z,SEKULIC I,et al.Reasoning with latent structure refinement for document-level realtion extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:1546-1557. [11]KIPF T,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations.2017. [12]ZENG S,WU Y,CHANG B.Sire:Separate intra-and inter-sentential reasoning for document-level relation extraction[C]//Findings of the Association for Computational Linguistics.2021:524-534. [13]XU W,CHEN K,ZHAO T.Document-level relation extraction with reconstruction [C]//Proceedings of the 33th Conference on Artificial Intelligence.2020:14167-14175. [14]DEVLIN J,CHANG M,LEE K,et al.BERT:Pre-training ofdeep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics.2019:4171-4186. [15]TANG H,CAO Y,ZHANG Z,et al.HIN:Hierarchical infe-rence network for document-level relation extraction[C]//Proceedings of the 24th Pacific-Asia Conference.2020:197-209. [16]ZENG S,XU R,CHANG B,et al.Double graph based reasoning for document-level relation extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:1630-1640. [17]JIA R,WONG C,POON H.Document-level n-ary relation extraction with multiscale representation Learning[C]//Procee-dings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics.2019:3693-3704. [18]TAO Q,LUO X,WANG H,et al.Enhancing relation extraction using syntactic indicators and sentential contexts[C]//2019 IEEE 31st International Conference on Tools with Artificial intelligence.2019:1574-1580. [19]HIRANO T,ASANO H,MATSUO Y,et al.Recognizing relation expression between named entities based on inherent and context-dependent features of relational words[C]//Proceedings of the 23th International Conference on Computational Linguistics.2010:409-417. [20]WU T,KONG F.Document-level relation extraction based ongraph attention convolutional neural network[J].Journal of Chinese Information Processing,2021,35(10):73-80. [21]YANG C N,PENG D L.Document-level entity relation extraction method integrating bidirectional simple recurrent unit and capsule network [J].Journal of Chinese Computer Systems,2022,43(5):964-968. [22]YUAN C,HUANG H,FENG C,et al.Document-level relation extraction with entity-selection attention[J].Information Sciences,2021,568:163-174. [23]WANG D,HU W,CAO E,et al.Global-to-local neural networks for document-level relation Extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:3711-3721. |
|