计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220700039-5.doi: 10.11896/jsjkx.220700039
黄玉娇1, 陈铭凯1, 郑媛1, 范兴刚1, 肖杰2, 龙海霞2
HUANG Yujiao1, CHEN Mingkai1, ZHENG Yuan1, FAN Xinggang1, XIAO Jie2, LONG Haixia2
摘要: 文本分类是自然语言处理领域中的经典问题。传统的文本分类模型存在需要人工提取特征,分类准确率不高,难以处理非欧氏空间数据等问题。为了解决上述问题,进一步提高文本分类的准确率,提出了W-GCN模型。该模型在Text-GCN模型的基础上加以改进,建立了全新的弱化结构模型,用以替换Text-GCN模型中对神经元的Dropout操作,并通过弱化权重,精确控制弱化力度大小,在一定程度保留Dropout防止过拟合功能的基础上,避免了由直接丢弃神经元造成的特征丢失问题,因此提高了模型分类的准确率。与Text-GCN模型相比,基于弱化图卷积网络建立的W-GCN模型,在R8数据集上准确率提高了0.38%,在R52数据集上准确率提高了0.62%。实验结果证明了模型改进和弱化结构的有效性。
中图分类号:
[1]CARRERAS X,MARQUEZ L.Boosting trees for anti-spamemail filtering[C]//Proceedings of European Conference Recent Advances in NLP.2001:58-64. [2]AGGARWAL C C,ZHAI C X.A survey of text classification algorithms[M].US:Mining Text Data,Springer,2012. [3]MCCALLUM A,NIGAM K.A comparison of event models for naive bayes text classificatin[C]//AAAI-98 Workshop on Learning for Text Categorization.1998:41-48. [4]JOACHIMS T.Text categorization with support vector ma-chines:Learning with many relevant features[C]//Proceedings of the 10th European Conference on Machine Learning.1998:137-142. [5]WANG X,CHEN R,JIA Y,et al.Short text classification using wikipedia concept based document representation[C]//International Conference on Information Technology and Applications.2013:471-474. [6]LECUN Y,BOTTOU L.Gradient-based learning applied to docu-ment recognition[C]//Proceedings of the IEEE.1998:2278-2324. [7]ZHOU J,CUI G,ZHANG Z,et al.Graph neural networks:A review of methods and applications[J].arXiv:1812.08434,2018. [8]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24. [9]ZHANG Z,CUI P,ZHU W. Deep Learning on Graphs:A Survey[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(1):249-270. [10]ZHOU J,CUI G,HU S,et al.Graph neural networks:A review of methods and applications[J].AI Open,2020,1:57-81. [11]DEFFERRARD M,BRESSON X,VANDERGHEYNST P,et al.Convolutional neural networks on graphs with fastlocali-zed spectral filtering[C]//Neural Information Processing Systems.2016:3844-3852. [12]YAO L,MAO C,LUO Y.Graph Convolutional Networks for Text Classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:7370-7377. [13]HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computer Science,2012,3(4):212-223. [14]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:A Simple Way to Prevent Neural Networks from Overfitting[J].Journal of Machine Learning Research,2014,15(1):1929-1958. [15]BLEID M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(1):933-1022. [16]LAI S,XU L,LIU K,et al.Recurrent convolutional neural networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015:2267-2273. [17]CHEN B.Graph convolution neural network algorithm for text classification[D].Guilin:Guangxi Normal University,2021. [18]WANG T,ZHU X F,TANG G.Text classification based on graph convolution neural network with knowledge enhancement[J].Journal of Zhejiang University (Engineering Edition),2022,56(2):322-328. |
|