计算机科学 ›› 2022, Vol. 49 ›› Issue (8): 40-48.doi: 10.11896/jsjkx.220100188

• 数据库&大数据&数据科学* 上一篇    下一篇

基于多时间尺度时空图网络的交通流量预测模型

汪鸣, 彭舰, 黄飞虎   

  1. 四川大学计算机学院 成都 610041
  • 收稿日期:2022-01-19 修回日期:2022-02-23 发布日期:2022-08-02
  • 通讯作者: 彭舰(jianpeng@scu.edu.cn)
  • 作者简介:(15680831992@qq.com)
  • 基金资助:
    国家重点研发计划(2020YFB0704502);四川省重点研发计划(2020YFG0089,2020YFG0308,2020YFG0304,22ZDYF3599)

Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction

WANG Ming, PENG Jian, HUANG Fei-hu   

  1. College of Computer Science,Sichuan University,Chengdu 610041,China
  • Received:2022-01-19 Revised:2022-02-23 Published:2022-08-02
  • About author:WANG Ming,born in 1997,postgra-duate,is a student member of China Computer Federation.His main research interests include graph neural network and time-series prediction.
    PENG Jian,born in 1970,Ph.D,professor,Ph.D supervisor,is a outstanding member of China Computer Federation.His main research interests include big data and wireless sensor network.
  • Supported by:
    National Key R & D Program of China(2020YFB0704502) and Key R & D Program of Sichuan Province,China(2020YFG0089,2020YFG0308,2020YFG0304,22ZDYF3599).

摘要: 交通流预测在智能交通系统的建设中起着关键作用。但由于其复杂的时空依赖性和本身的不确定性使得研究变得极具挑战性。现有的一些方法主要是将单一的时间序列输入到循环神经网络以捕获时间依赖性,而且多数模型仅对时间模块和空间模块进行简单的堆叠,导致不能有效地融合时间和空间特征。为了解决以上问题,文中提出了一个多时间尺度时空图网络模型。模型先将序列数据划分为3种时间尺度序列,然后将序列输入到时空块(ST-Block)中提取数据的时空依赖性,最后进行预测。在时空块中使用图卷积网络和变体Transformer分别捕获数据中的时间和空间依赖性,并通过门控融合机制将两者提取到的特征进行融合。在两个真实的数据集上分别进行了短期和长期的预测实验,结果表明了MTSTGNN模型在交通流预测任务上的优秀性能。

关键词: Transformer, 交通流预测, 门控融合机制, 图卷积网络, 注意力机制

Abstract: Traffic flow prediction plays a key role in intelligent transportation system.However,due to its complex spatial-temporal dependence and its uncertainty,research becomes extremely challenging.Some existing methods mainly use a single time series and input it into a recurrent neural network to capture temporal dependency.Moreover,most models only simply stack temporal modules and spatial modules,resulting in ineffective feature fusion.To address these issues,this paper proposes a multi-time scale spatial-temporal graph neural network model.The model divides the sequence data into three time-scale sequences,then puts sequence data into the ST-Blocks to extract the spatial-temporal features of data,and finally makes the prediction.In ST-Block,graph convolutional network and variant Transformer are used to capture spatial dependency and temporal dependency respectively,and the output feature of the two sub-modules are fused through a gate mechanism.A large number of experiments are conducted on two real data sets in this paper,including short-term and long-term prediction,and the results show the excellent performance of MTSTGNN model on the task of traffic flow prediction.

Key words: Attention mechanism, Gate mechanism, Graph convolutional network, Traffic flow prediction, Transformer

中图分类号: 

  • TP183
[1]XU H B,DENG H J.Application of artificial intelligence technology in urban intelligent transportation system [J].Computer Products and Circulation,2020(1):167.
[2]WILLIAMS B M,HOEL L A.Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process[J].Dissertation Abstracts International,1999,60(1):1-5.
[3]OKUTANI I,STEPHANEDES Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research Part B Methodological,1984,18(1):1-11.
[4]LINT H V,HINSBERGEN C V.Short-Term Traffic and Travel Time Prediction Models[J].Transportation Research E-Circular,2012,45(7):635-641.
[5]DRUCKER H,BURGES C J C,KAUFMAN L,et al.SupportVector Regression Machines[J].Advances in Neural Information Processing Systems,1997,28(7):779-784.
[6]FU R,ZHANG Z,LI L.Using LSTM and GRU neural network methods for traffic flow prediction[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC).2016:324-328.
[7]LIU Y,ZHENG H,FENG X,et al.Short-term traffic flow prediction with Conv-LSTM[C]//2017 9th International Confe-rence on Wireless Communications and Signal Processing(WCSP).2017:1-6.
[8]LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:Data-driven traffic forecasting[J].arXiv:1707.01926,2017.
[9]YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting[J].arXiv:1709.04875,2017.
[10]XU M,DAI W,LIU C,et al.Spatial-temporal transformer networks for traffic flow forecasting[J].arXiv:2001.02908,2020.
[11]ZHOU M.Research on short-term traffic flow prediction me-thod based on road network spatiotemporal information[D].Beijing:North China University of Technology,2020.
[12]NIEPERT M,AHMED M,KUTZKOV K.Learning convolu-tional neural networks for graphs[C]//International Conference on Machine Learning.2016:2014-2023.
[13]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24.
[14]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013.
[15]DEFFERRARD M,BRESSON X,VAND P.Convolutional neural networks on graphs with fast localized spectral filtering[J].Advances in Neural Information Processing Systems,2016,29:3844-3852.
[16]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014.
[17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008.
[18]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of AAAI.2021.
[19]WU H,XU J,WANG J,et al.Autoformer:Decomposition transformers with auto-correlation for long-term series forecasting[J].Advances in Neural Information Processing Systems,2021,34:22419-22430.
[20]ZHENG C,FAN X,WANG C,et al.Gman:A graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:1234-1241.
[21]CHEN W,CHEN L,XIE Y,et al.Multi-range attentive bicomponent graph convolutional network for traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:3529-3536.
[22]PARK C,LEE C,BAHNG H,et al.ST-GRAT:A novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:1215-1224.
[23]FAWAZ H I,FORESTIER G,WEBER J,et al.Data augmentation using synthetic data for time series classification with deep residual networks[J].arXiv:1808.02455,2018.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[3] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[4] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[5] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[8] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[9] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[10] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[11] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[12] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[13] 孟月波, 穆思蓉, 刘光辉, 徐胜军, 韩九强.
基于向量注意力机制GoogLeNet-GMP的行人重识别方法
Person Re-identification Method Based on GoogLeNet-GMP Based on Vector Attention Mechanism
计算机科学, 2022, 49(7): 142-147. https://doi.org/10.11896/jsjkx.210600198
[14] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[15] 熊罗庚, 郑尚, 邹海涛, 于化龙, 高尚.
融合双向门控循环单元和注意力机制的软件自承认技术债识别方法
Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism
计算机科学, 2022, 49(7): 212-219. https://doi.org/10.11896/jsjkx.210500075
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!