计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 211200229-5.doi: 10.11896/jsjkx.211200229

• 网络&通信 • 上一篇    下一篇

基于线性规划松弛的移动边缘计算卸载模型

雷雪梅1, 刘丽2, 王倩2   

  1. 1 北京科技大学信息化建设与管理办公室 北京 100083;
    2 北京科技大学自动化学院 北京 100083
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 刘丽(liuli@ustb.edu.cn)
  • 作者简介:(xmlei@ustb.edu.cn)
  • 基金资助:
    国家自然科学基金面上项目(12071025);佛山市科技创新专项资金项目(BK20AE004)

MEC Offloading Model Based on Linear Programming Relaxation

LEI Xuemei1, LIU Li2, WANG Qian2   

  1. 1 Office of Information Construction and Management,University of Science and Technology Beijing,Beijing 100083,China;
    2 School of Automation and Engineering,University of Science and Technology Beijing,Beijing 100083,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:LEI Xuemei,born in 1972,Ph.D,senior engineer.Her main research interests include mobile computing,network optimization and data analysis. LIU li,born in 1968,Ph.D,professor.Her main research interests include mobile computing and multi-objective optimization.
  • Supported by:
    National Natural Science Foundation of China(12071025)and Scientific and Technological Innovation Foundation of Foshan Municipal People’s Government(BK20AE004).

摘要: 移动边缘计算中本地设备可以将计算任务卸载到靠近网络的边缘节点上执行,只将计算结果回传至用户端,从而减小传输时延,降低移动设备的功耗,减轻客户端的负载压力,还可以减少核心网络的计算负载。针对复杂多类边缘节点的移动边缘计算环境,建立了基于线性规划松弛的三级计算任务卸载决策模型,称为CART-CRITIC-LR(CCLR)。首先通过分类回归决策树算法(CART)筛选出本地执行的计算任务;然后采用多属性决策的CRITIC算法确定3个性能指标的权值分配;最后,基于线性规划松弛(LR)对计算卸载问题建模,使计算任务卸载决策的总时延、总能耗和总成本最优。实验比较了其他计算卸载策略的能耗、成本、延迟时间等指标,结果表明CCLR卸载决策算法在保证多目标全局最优的同时,实现了总时延最短,说明了所提算法的有效性与适用性。

关键词: 移动边缘计算, 任务卸载, 多属性决策, 分类回归决策树, 线性规划

Abstract: In the mobile edge computing(MEC),the local device can offload tasks to the edge node near the network for computation processing,thereby reducing the delay,power consumption and overload of the client,also the computing loading core network.For the complex MEC environment of multi-type edge nodes,a three-stage computing offloading decision is modeled based on linear programming relaxation,that is CART-CRITIC-LR(CCLR) algorithm.First,the classification and regression decision tree algorithm(CART) is used to screen out the locally executed calculation tasks.Secondly,the multi-attribute decision-making algorithm(CRITIC) is used to determine the weight of the three performance indicators respectively.Then the calculation offloa-ding problem is modeled as a linear programming relaxation(LR ) to optimize the equilibrium solutions among the total delay,total energy consumption and total cost.Each offloading strategy is analyzed by comprehensively comparing the energy consumption,cost,delay.experimental results show that the CCLR algorithm achieves the shortest total delay while ensuring the multi-objective global optimization,which illustrates the effectiveness and applicability of the algorithm.

Key words: Mobile edge computing, Task offloading, Multi-attribute decision, Classification and regression tree, Linear programming

中图分类号: 

  • TP393
[1]CHEN X,CAI Y,LI L,et al.Energy-Efficient Resource Allocation for Latency-Sensitive Mobile Edge Computing[J].IEEE Transactions on Vehicular Technology,2019,69(2):2246-2261.
[2]LIU X,YANG Q,LUO J,et al.An energy-aware offloadingframework for edge-augmented mobile RFID systems[J].IEEE Internet of Things,2018,6(3):3994-4004.
[3]WANG S,ZHANG X,ZHANG Y.A survey on mobile edge networks:Convergence of computing,caching and communications[J].IEEE Access,2017,5:6757-6779.
[4]TAO X,OTA K,DONG M,et al.Performance GuaranteedComputation Offloading for Mobile-Edge Cloud Computing[J].IEEE Wireless Communications Letters,2017,6(6):774-777.
[5]LAN L,XIAOYONG Z,KAIYANG L,et al.An Energy-Aware Task Offloading Mechanism in Multiuser Mobile-Edge Cloud Computing[J].Mobile Information Systems,2017,5(7):13455-13464.
[6]ZHANG H,GUO F,JI H,et al.Combinational Auction Based Service Provider Selection in Mobile Edge Computing Networks[J].IEEE Access,2017,5:13455-13464.
[7]CUI Y Y,ZHANG D G,ZHANG T,et al.A Multi-User Fine-Grained Task Offloading Scheduling Approach of Mobile Edge Computing[J].ActaElectronica Sinica,2021,49(11):2202-2207.
[8]HUANG L,FENG X,FENG A,et al.Distributed Deep Lear-ning-based Offloading for Mobile Edge Computing Networks[J].Mobile Networks and Applications,2022,27(6):1123-1130.
[9]El HABER E,NGUYEN T M,ASSI C.Joint Optimization of Computational Cost and Devices Energy for Task Offloading in Multi-Tier Edge-Clouds[J].IEEE Transactions on Communications,2019,67(5):3407-3421.
[10]ZHANG J,XIA W,YAN F,et al.Joint Computation Offloading and Resource Allocation Optimization in Heterogeneous Networks With Mobile Edge Computing[J].IEEE Access,2018:19324-19337.
[11]FAN Y F,YUAN S,CAI Y,et al.Deep Reinforcement Lear-ning-based Collaborative Computation Offloading Scheme in Vehicular Edge Computing[J].Computer Science,2021,48(5):270-276.
[12]SUN G,AYEPAH-MENSAH D,LU L,et al.Delay-aware content distribution via cell clustering and content placement for multiple tenants[J].Journal of Network & Computer Applications,2019,137(2019):112-126.
[13]SMAYRA T,CHARARA Z,SLEILATY G,et al.Classification and Regression Tree(CART) model of sonographic signs in predicting thyroid nodules malignancy[J].European Journal of Radiology Open,2019,6:343-349.
[14]DIAKOULAKI D,MAVROTAS G,PAPAYANNAKIS L.Determining objective weights in multiple criteria problems:The critic method[J].Computers & Operations Research,1995,22(7):763-770.
[15]DINH T Q,TANG J,LA Q D,et al.Offloading in Mobile Edge Computing:Task Allocation and Computational Frequency Sca-ling[J].IEEE Transactions on Communications,2017,65(8):3571-3584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!