计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 619-627.doi: 10.11896/jsjkx.210600165

• 计算机网络 • 上一篇    下一篇

多无人机使能移动边缘计算系统中的计算卸载与部署优化

刘漳辉1,2, 郑鸿强1,2, 张建山1,2, 陈哲毅3   

  1. 1 福州大学数学与计算机科学学院 福州 350116
    2 福建省网络计算与智能信息处理重点实验室 福州 350116
    3 英国埃克塞特大学计算机科学系 埃克塞特 EX4 4QF
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 陈哲毅(zc300@exeter.ac.uk)
  • 作者简介:(lzh@fzu.edu.cn)
  • 基金资助:
    国家自然科学基金(62072108);福建省自然科学基金杰青项目(2020J06014)

Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems

LIU Zhang-hui1,2, ZHENG Hong-qiang1,2, ZHANG Jian-shan1,2, CHEN Zhe-yi3   

  1. 1 College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350116,China
    2 Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing,Fuzhou 350116,China
    3 Department of Computer Science,University of Exeter,Exeter EX4 4QF,United Kingdom
  • Online:2022-06-10 Published:2022-06-08
  • About author:LIU Zhang-hui,born in 1971,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include big data technology and intelligence computation.
    CHEN Zhe-yi,born in 1991,Ph.D.His main research interests include cloud/edge computing,resource optimization,deep lear-ning,and reinforcement lear-ning.
  • Supported by:
    National Natural Science Foundation of China(62072108) and Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2020J06014).

摘要: 无人机与移动边缘计算技术的结合突破了传统地面通信的局限性。无人机所提供的有效视距信道可大大改善边缘服务器与移动设备之间的通信质量。为了进一步提升移动边缘计算系统的服务质量,设计了一种多无人机使能的移动边缘计算系统模型。在该系统中,无人机作为边缘服务器为移动设备提供计算服务,通过联合优化无人机部署与计算卸载策略实现平均任务响应时间的最小化。基于问题定义,提出了一种PSO-GA-G双层嵌套联合优化方法,该方法的外层采用了结合遗传算法算子的离散粒子群优化算法(Discrete Particle Swarm Optimization Algorithm Combined with Genetic Algorithm Operators,PSO-GA),实现了对无人机部署位置的优化;而该方法的内层则是采用了贪心算法(Greedy Algorithm),实现了对计算卸载策略的优化。大量仿真实验验证了所提方法的可行性和有效性。实验结果表明,相比其他基准方法,所提出方法可以实现更短的平均任务响应时间。

关键词: 计算卸载, 离散粒子群优化算法, 贪心算法, 无人机部署, 移动边缘计算

Abstract: The combination of unmanned aerial vehicles(UAVs) and mobile edge computing(MEC) technology breaks the limitations of traditional terrestrial communications.The effective line-of-sight channel provided by UAVs can greatly improve the communication quality between edge servers and mobile devices(MDs).To further enhance the quality-of-service(QoS) of MEC systems,a multi-UAV-enabled MEC system model is designed.In the proposed model,UAVs are regarded as edge servers to offer computing services for MDs,aiming to minimize the average task response time by jointly optimizing UAV deployment and computation offloading.Based on the problem definition,a two-layer joint optimization method(PSO-GA-G) is proposed.On one hand,the outer layer of the proposed method utilizes a discrete particle swarm optimization algorithm combined with genetic algorithm operators(PSO-GA) to optimize the UAV deployment.On the other hand,the inner layer of the proposed method adopts a greedy algorithm to optimize the computation offloading.Extensive simulation experiments verify the feasibility and effectiveness of the proposed method.The results show that the proposed method can achieve shorter average task response time,compared to other baseline methods.

Key words: Computation offloading, Discrete particle swarm optimization algorithm, Greedy algorithm, Mobile edge computing, Unmanned aerial vehicle deployment

中图分类号: 

  • TP393
[1] XIAO H,HU Z,YANG K,et al.An Energy-Aware Joint Routing and Task Allocation Algorithm in MEC Systems Assisted by Multiple UAVs[C]//2020 International Wireless Communications and Mobile Computing(IWCMC).2020:1654-1659.
[2] PORAMBAGE P,OKWUIBE J,LIYANAGE M,et al.Surveyon multi-access edge computing for Internet of things realization[J].IEEE Communications Surveys & Tutorials,2018,20(4):2961-2991.
[3] GUO H Z,LIU J J,ZHANG J.Computation Offloading forMulti-Access Mobile Edge Computing in Ultra-Dense Networks[J].IEEE Communications Magazine,2018,56(8):14-19.
[4] HUANG G,MA Y,LIU X,et al.Model-Based Automated Navigation and Composition of Complex Service Mashups[J].IEEE Transactions on Services Computing,2015,8(3):494-506.
[5] ZHANG T K,XU Y,LOO J,et al.Joint Computation and Communication Design for UAV-Assisted Mobile Edge Computing in IoT[J].IEEE Transactions on Industrial Informatics,2020,16(8):5505-5516.
[6] NGUYEN V,KHANH T T,VAN NAM P,et al.Towards Flying Mobile Edge Computing[C]//2020 International Conference on Information Networking(ICOIN).2020:723-725.
[7] XU J,ZENG Y,ZHANG R.UAV-Enabled Wireless PowerTransfer:Trajectory Design and Energy Optimization[J].IEEE Transactions on Wireless Communications,2018,17(8):5092-5106.
[8] SPINELLI F,MANCUSO V.Towards Enabled Industrial Verticals in 5G:A Survey on MEC-Based Approaches to Provisioning and Flexibility[J].IEEE Communications Surveys & Tutorials,2021,23(1):596-630.
[9] SHI W,JIE C,QUAN Z,et al.Edge Computing:Vision andChallenges[J].Internet of Things Journal,IEEE,2016,3(5):637-646.
[10] FLORES H,HUI P,TARKOMA S,et al.Mobile code offloa-ding:from concept to practice and beyond[J].IEEE Communications Magazine,2015,53(3):80-88.
[11] BI S,ZHANG Y J.Computation Rate Maximization for Wireless Powered Mobile-Edge Computing with Binary Computation Offloading[J].IEEE Transactions on Wireless Communications,2018,17(6):4177-4190.
[12] NING Z,DONG P,KONG X,et al.A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things[J].IEEE Internet of Things Journal,2019,6(3):4804-4814.
[13] LI Y,XU G,GE J,et al.Jointly Optimizing Helpers Selectionand Resource Allocation in D2D Mobile Edge Computing[C]//2020 IEEE Wireless Communications and Networking Confe-rence(WCNC).IEEE,2020:1-6.
[14] SALEEM U,LIU Y,JANGSHER S,et al.Latency Minimization for D2D-Enabled Partial Computation Offloading in Mobile Edge Computing[J].IEEE Transactions on Vehicular Technology,2020,69(99):4472-4486.
[15] CAO X,WANG F,XU J,et al.Joint Computation and Communication Cooperation for Energy-Efficient Mobile Edge Computing[J].IEEE Internet of Things Journal,2019,6(3):4188-4200.
[16] HAN Y,ZHAO Z,MO J,et al.Efficient Task Offloading withDependency Guarantees in Ultra-Dense Edge Networks[C]//2019 IEEE Global Communications Conference(GLOBECOM).IEEE,2020.
[17] ZHANG W,LI L,ZHANG N,et al.Air-Ground Integrated Mobile Edge Networks:A Survey[J].IEEE Access,2020,8:125998-126018.
[18] CHEN R,CUI L,ZHANG Y,et al.Delay Optimization with FCFS Queuing Model in Mobile Edge Computing-Assisted UAV Swarms:A Game-Theoretic Learning Approach[C]//2020 International Conference on Wireless Communications and Signal Processing(WCSP).2020.
[19] ZHANG K,GUI X,REN D,et al.Energy-Latency Tradeoff for Computation Offloading in UAV-assisted Multi-Access Edge Computing System[J].IEEE Internet of Things Journal,2021,8(8):6709-6719.
[20] KIM K,YU M P,HONG C S.Machine Learning Based Edge-Assisted UAV Computation Offloading for Data Analyzing[C]//2020 International Conference on Information Networking(ICOIN).2020:117-120.
[21] WANG L,HUANG P,WANG K,et al.RL-Based User Asso-ciation and Resource Allocation for Multi-UAV enabled MEC[C]//2019 15th International Wireless Communications and Mobile Computing Conference(IWCMC).IEEE,2019:741-746.
[22] SEID A M,BOATENG G O,ANOKYE S,et al.Collaborative Computation Offloading and Resource Allocation in Multi-UAV Assisted IoT Networks:A Deep Reinforcement Learning Approach[J].IEEE Internet of Things Journal,2021,8(15):12203-12218.
[23] YAO K,XU Y,CHEN J,et al.Distributed Joint Optimization of Deployment,Computation Offloading and Resource Allocation in Coalition-based UAV Swarms[C]//2020 International Confe-rence on Wireless Communications and Signal Processing(WCSP).2020:207-212.
[24] YANG L,YAO H,ZHANG X,et al.Multi-UAV Deploymentfor MEC Enhanced IoT Networks[C]//2020 IEEE/CIC International Conference on Communications in China(ICCC).IEEE,2020:436-441.
[25] YANG L,YAO H,WANG J,et al.Multi-UAV Enabled Load-Balance Mobile Edge Computing for IoT Networks[J].IEEE Internet of Things Journal,2020,7(8):6898-6908.
[26] ZHANG Y,ZHANG L,LIU C.3-D Deployment Optimization ofUAVs Based on Particle Swarm Algorithm[C]//2019 IEEE 19th International Conference on Communication Technology(ICCT).IEEE,2019:954-957.
[27] HUANG P Q,WANG Y,WANG K,et al.Differential EvolutionWith a Variable Population Size for Deployment Optimization in a UAV-Assisted IoT Data Collection System[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2019,4(3):324-335.
[28] ZHANG X,ZHANG J,XIONG J,et al.Energy Efficient Multi-UAV-Enabled Multi-Access Edge Computing Incorporating NOMA[J].IEEE Internet of Things Journal,2020,7(6):5613-5627.
[29] WANG Y,RU Z Y,WANG K,et al.Joint Deployment and Task Scheduling Optimization for Large-Scale Mobile Users in Multi-UAV-Enabled Mobile Edge Computing[J].IEEE Transactions on Cybernetics,2020,50(9):3984-3997.
[30] LIN B,GUO W Z,CHEN G L.Scheduling strategy for scienceworkflow withdeadline constraint on multi-cloud[J].Journal on Communications,2018,39(1):56-69.
[31] QU H,ZHANG W,ZHAO J,et al.Rapid Deployment of UAVs Based on Bandwidth Resources in Emergency Scenarios[C]//2020 Information Communication Technologies Conference(ICTC).2020:86-90.
[1] 孙慧婷, 范艳芳, 马孟晓, 陈若愚, 蔡英.
VEC中基于动态定价的车辆协同计算卸载方案
Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC
计算机科学, 2022, 49(9): 242-248. https://doi.org/10.11896/jsjkx.210700166
[2] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[3] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[4] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[5] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[6] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[7] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[8] 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰.
视频缓存策略中QoE和能量效率的公平联合优化
Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos
计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027
[9] 张海波, 张益峰, 刘开健.
基于NOMA-MEC的车联网任务卸载、迁移与缓存策略
Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC
计算机科学, 2022, 49(2): 304-311. https://doi.org/10.11896/jsjkx.210100157
[10] 梁俊斌, 张海涵, 蒋婵, 王天舒.
移动边缘计算中基于深度强化学习的任务卸载研究进展
Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095
[11] 薛艳芬, 高继梅, 范贵生, 虞慧群, 许亚杰.
边缘计算中基于能耗感知的容错协同任务执行算法
Energy-aware Fault-tolerant Collaborative Task Execution Algorithm in Edge Computing
计算机科学, 2021, 48(6A): 374-382. https://doi.org/10.11896/jsjkx.200900027
[12] 宋海宁, 焦健, 刘永.
高速公路中的移动边缘计算研究
Research on Mobile Edge Computing in Expressway
计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212
[13] 范艳芳, 袁爽, 蔡英, 陈若愚.
车载边缘计算中基于深度强化学习的协同计算卸载方案
Deep Reinforcement Learning-based Collaborative Computation Offloading Scheme in VehicularEdge Computing
计算机科学, 2021, 48(5): 270-276. https://doi.org/10.11896/jsjkx.201000005
[14] 李振江, 张幸林.
减少核心网拥塞的边缘计算资源分配和卸载决策
Resource Allocation and Offloading Decision of Edge Computing for Reducing Core Network Congestion
计算机科学, 2021, 48(3): 281-288. https://doi.org/10.11896/jsjkx.200700025
[15] 姚泽玮, 林嘉雯, 胡俊钦, 陈星.
基于PSO-GA的多边缘负载均衡方法
PSO-GA Based Approach to Multi-edge Load Balancing
计算机科学, 2021, 48(11A): 456-463. https://doi.org/10.11896/jsjkx.210100191
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!