计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220200151-6.doi: 10.11896/jsjkx.220200151

• 网络&通信 • 上一篇    下一篇

基于深度学习的超高频标签识别系统

余加宝1, 姚俊梅1, 谢瑞桃1, 伍楷舜1, 马军超2   

  1. 1 深圳大学计算机与软件学院 广东 深圳 518000;
    2 深圳技术大学大数据与互联网学院 广东 深圳 518000
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 马军超(majunchao@sztu.edu.cn)
  • 作者简介:(1844782541@qq.com)
  • 基金资助:
    国家自然科学基金(62072317,61802263);广东省自然科学基金(2017A030312008);深圳大学青年教师启动项目(2019052,860/000002110322);深圳技术大学新引进高端人才财政补助科研启动项目(20211061010016)

Tag Identification for UHF RFID Systems Based on Deep Learning

YU Jiabao1, YAO Junmei1, XIE Ruitao1, WU Kaishun1, MA Junchao2   

  1. 1 School of Computer and Software,Shenzhen University,Shenzhen,Guangdong 518000,China;
    2 School of Big Data and Internet,Shenzhen Technology University,Shenzhen,Guangdong 518000,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:YU Jiabao,born in 1996,master.His main research interests include wireless device identification and deep learning. MA Junchao,born in 1983,associate professor,Ph.D,senior engineer.His main research interestsinclude big data,interest of things,and wireless ad hoc and sensor networks.
  • Supported by:
    National Natural Science Foundation of China(62072317,61802263),Guangdong Natural Science Foundation(2017A030312008),Faculty Research Fund of Shenzhen University(2019052,860/000002110322) and Natural Science Foundation of Top Talent of SZTU(20211061010016).

摘要: 无线射频识别(Radio Frequency Identification,RFID)系统最基本的功能是标签识别,然而身份验证系统无法检测到伪造或克隆标签,从而出现潜在安全隐患和个人隐私问题。目前有基于加密的认证协议和基于特征提取的解决方法,其中基于加密的认证协议方法不兼容现有的协议,基于特征提取的方法存在特征提取困难或者识别距离短等限制。文中基于标签物理层信号的真实性进行识别,结合深度学习技术,提出标签信号识别方法。其核心思想在于在RFID通信过程中,利用标签的后向散射信号提取与标签逻辑信息无关的信号,将提取的信号送入卷积神经网络进行相似度匹配,根据得到的相似度匹配分数与给定的阈值对比,最后实现标签的真实性识别。采用USRP N210作为RFID系统的阅读器,采用150个超高频商用标签作为信号的发射器,并在实际场景中采集真实的RFID信号。通过实验验证了基于深度学习的标签识别能达到94%以上的识别精度,在识别距离长达2m的情况下其等错误比率(EER)为0.034。

关键词: 物理层识别, 无线射频识别, 深度学习, 标签

Abstract: The most basic function of radio frequency identification(RFID) system is tag identification.However,the current authentication system cannot detect forged or cloned tags,which leads to potential security and privacy issues.At present,there are encryption based authentication protocols and feature extraction based solutions,among which encryption based authentication protocol is incompatible with existing protocols and feature extraction based authentication protocol has limitations such as difficulty in feature extraction or short recognition distance.This paper proposes a tag identification method for UHF RFID systems to overcome the two shortenings.The core idea is to first extract signals irrelevant to the logical information of tags from the backscattered RFID signals,and then send them to the convolutional neural network for similarity matching.According to the score of similarity matching and a given threshold,the authenticity of the tag is finally recognized.In this paper,we establish an experimental system which contains an USRP N210 used as the reader of the RFID system,and contains 150 UHF commercial tags to backscatter signals from the reader.We then collects the RFID signals based on this experiment.Experimental results show that the tag recognition accuracy based on deep learning can reach more than 94%,and its equal error ratio(EER) is 0.034 when the recognition distance is up to 2m.

Key words: Physical-layer identification, Radio frequency identification, Deep learning, Tag

中图分类号: 

  • TP391
[1]EPCglobal,Specifification for RFID Air Interface EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860MHz-960MHz,2008.
[2]HUI Y C,WANG Y M.Secure RFID system based on lightweight block cipher algorithm of optimized S-box[C]//IEEE.2010.
[3]YAGCI M Y,AYDIN M A.Implementation of Passif Secure RFID Protocol[C]//2018 3rd International Conference on Computer Science and Engineering(UBMK).2018.
[4]ZHAO F,LI H,YU F.An Efficient and Secure Protocol for Low-cost RFID Systems[C]//2009 International Conference on Computer and Communications Security(ICCCS).2009.
[5]KERSCHBAUM F,SORNIOTTI A.RFID-based supply chainpartner authentication and key agreement[C]//Second ACM Conference on Wireless Network Security.2009.
[6]SENTHILKUMAR C G P,THOMPSON D R,DI J.Finger-printing RFID Tags[J].IEEE Transactions on Dependable & Secure Computing,2011,8(6):938-943.
[7]ZANETTI D,DANEV B,CAPKUN S.Physical-layer identification of UHF RFID tags[C]//Proceedings of the 16th Annual International Conference on Mobile Computing and Networking.2010.
[8]HAN J,QIAN C,YANG P,et al.GenePrint:Generic and Accurate Physical-Layer Identification for UHF RFID Tags[J].IEEE ACM Transactions on Networking,2016,24(2):846-858.
[9]O’SHEA T J,CORGAN J,CLANCY T C.Convolutional Radio Modulation Recognition Networks[C]//International Confe-rence on Engineering Applications of Neural Networks.2016.
[10]OSHEA T,HOYDIS J.An Introduction to Deep Learning forthe Physical Layer[J].IEEE Transactions on Cognitive Communications & Networking,2017,3(4):563-575.
[11]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning Representations by Back Propagating Errors[J].Nature,1986,323(6088):533-536.
[12]HINTON G E,SALAKHUTDINOV R R.Reducing the Dimensionality of Data with Neural Networks[J/OL].https://www.science.org/doi/10.1126/science.1127647.
[13]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based lear-ning applied to document recognition[C]//Proceedings of the IEEE.1998:2278-2324.
[14]KRIZHEVSKY A,SUTSKEVER I,HINTONG E.Imagenetclassification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105.
[15]TAIGMAN Y,YANG M,RANZATO M,et al.Deepface:Clo-sing the gap to human-level performance in face verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:1701-1708.
[16]SILVER D,HUANG A,MADDISONC J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489.
[17]BAI Z,WANG L,CHEN J N,et al.Optimization of deep convolutional Neural Network for Large-scale Image classification[J].Journal of Software,2018,29(4):10.
[18]KARGAS N,F MAVROMATIS,BLETSAS A.Fully-Coherent Reader With Commodity SDR for Gen2 FM0 and Computational RFID[J].Wireless Communications Letters IEEE,2015,4(6):617-620.
[19]BUETTNER M,WETHERALLD.A software radio-basedUHF RFID reader for PHY/MAC experimentation[C]//2011 IEEE International Conference on RFID.2011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!