计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220200151-6.doi: 10.11896/jsjkx.220200151
余加宝1, 姚俊梅1, 谢瑞桃1, 伍楷舜1, 马军超2
YU Jiabao1, YAO Junmei1, XIE Ruitao1, WU Kaishun1, MA Junchao2
摘要: 无线射频识别(Radio Frequency Identification,RFID)系统最基本的功能是标签识别,然而身份验证系统无法检测到伪造或克隆标签,从而出现潜在安全隐患和个人隐私问题。目前有基于加密的认证协议和基于特征提取的解决方法,其中基于加密的认证协议方法不兼容现有的协议,基于特征提取的方法存在特征提取困难或者识别距离短等限制。文中基于标签物理层信号的真实性进行识别,结合深度学习技术,提出标签信号识别方法。其核心思想在于在RFID通信过程中,利用标签的后向散射信号提取与标签逻辑信息无关的信号,将提取的信号送入卷积神经网络进行相似度匹配,根据得到的相似度匹配分数与给定的阈值对比,最后实现标签的真实性识别。采用USRP N210作为RFID系统的阅读器,采用150个超高频商用标签作为信号的发射器,并在实际场景中采集真实的RFID信号。通过实验验证了基于深度学习的标签识别能达到94%以上的识别精度,在识别距离长达2m的情况下其等错误比率(EER)为0.034。
中图分类号:
[1]EPCglobal,Specifification for RFID Air Interface EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860MHz-960MHz,2008. [2]HUI Y C,WANG Y M.Secure RFID system based on lightweight block cipher algorithm of optimized S-box[C]//IEEE.2010. [3]YAGCI M Y,AYDIN M A.Implementation of Passif Secure RFID Protocol[C]//2018 3rd International Conference on Computer Science and Engineering(UBMK).2018. [4]ZHAO F,LI H,YU F.An Efficient and Secure Protocol for Low-cost RFID Systems[C]//2009 International Conference on Computer and Communications Security(ICCCS).2009. [5]KERSCHBAUM F,SORNIOTTI A.RFID-based supply chainpartner authentication and key agreement[C]//Second ACM Conference on Wireless Network Security.2009. [6]SENTHILKUMAR C G P,THOMPSON D R,DI J.Finger-printing RFID Tags[J].IEEE Transactions on Dependable & Secure Computing,2011,8(6):938-943. [7]ZANETTI D,DANEV B,CAPKUN S.Physical-layer identification of UHF RFID tags[C]//Proceedings of the 16th Annual International Conference on Mobile Computing and Networking.2010. [8]HAN J,QIAN C,YANG P,et al.GenePrint:Generic and Accurate Physical-Layer Identification for UHF RFID Tags[J].IEEE ACM Transactions on Networking,2016,24(2):846-858. [9]O’SHEA T J,CORGAN J,CLANCY T C.Convolutional Radio Modulation Recognition Networks[C]//International Confe-rence on Engineering Applications of Neural Networks.2016. [10]OSHEA T,HOYDIS J.An Introduction to Deep Learning forthe Physical Layer[J].IEEE Transactions on Cognitive Communications & Networking,2017,3(4):563-575. [11]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning Representations by Back Propagating Errors[J].Nature,1986,323(6088):533-536. [12]HINTON G E,SALAKHUTDINOV R R.Reducing the Dimensionality of Data with Neural Networks[J/OL].https://www.science.org/doi/10.1126/science.1127647. [13]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based lear-ning applied to document recognition[C]//Proceedings of the IEEE.1998:2278-2324. [14]KRIZHEVSKY A,SUTSKEVER I,HINTONG E.Imagenetclassification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105. [15]TAIGMAN Y,YANG M,RANZATO M,et al.Deepface:Clo-sing the gap to human-level performance in face verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:1701-1708. [16]SILVER D,HUANG A,MADDISONC J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489. [17]BAI Z,WANG L,CHEN J N,et al.Optimization of deep convolutional Neural Network for Large-scale Image classification[J].Journal of Software,2018,29(4):10. [18]KARGAS N,F MAVROMATIS,BLETSAS A.Fully-Coherent Reader With Commodity SDR for Gen2 FM0 and Computational RFID[J].Wireless Communications Letters IEEE,2015,4(6):617-620. [19]BUETTNER M,WETHERALLD.A software radio-basedUHF RFID reader for PHY/MAC experimentation[C]//2011 IEEE International Conference on RFID.2011. |
|