计算机科学 ›› 2023, Vol. 50 ›› Issue (8): 163-169.doi: 10.11896/jsjkx.220700216
肖桂阳, 王立松, 江国华
XIAO Guiyang, WANG Lisong , JIANG Guohua
摘要: 大多传统的知识表示学习方法只关注三元组中的结构化信息,无法很好地利用实体图像、关系路径、文本描述等附加信息来学习知识表示或只融合一种附加信息。因此,提出同时融合实体描述和图像的多模态知识图谱嵌入方法,通过文本、图像相互增强,可以提供更加全面的外部信息来弥补单个信息源的不完整性给知识表示学习带来的不足。首先进行实体描述和图像建模,得到实体的文本表示和图像表示,并把它们作为TransE中结构表示的补充,最后通过3种实体表示的联合训练实现知识图谱和文本、图像的统一空间表示,提高实体和关系预测的准确性。实验结果表明,该模型实体预测的命中率比不融合附加信息的方法提高了3.09%,比只融合实体描述的方法提高了0.97%,比只融合实体图像的方法提高了1.32%。
中图分类号:
[1]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.2008:1247-1250. [2]AUER S,BIZER C,KOBILAROV G,et al.Dbpedia:A nucleus for a web of open data[C]//The Semantic Web:6th Interna-tional Semantic Web Conference,2nd Asian Semantic Web Conference(ISWC 2007+ ASWC 2007).Busan,Korea:Springer,2007:722-735. [3]SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web.2007:697-706. [4]YANG B,YI H W,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[J].arXiv:1412.6575,2014. [5]YIN J,JIANG X,LU Z,et al.Neural generative question an-swering[J].arXiv:1512.01337,2015. [6]WANG Q,MAO Z,WANG B,et al.Knowledge graph embedding:A survey of approaches and applications[J].IEEE Tran-sactions on Knowledge and Data Engineering,2017,29(12):2724-2743. [7]DONG X,GABRILOVICH E,HEITZ G,et al.Knowledgevault:A web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:601-610. [8]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2.2013:2787-2795. [9]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNetclassification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1.2012:1097-1105. [10]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2.2013:3111-3119. [11]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.2014:1112-1119. [12]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence.2015. [13]FAN M,ZHOU Q,CHANG E,et al.Transition-based know-ledge graph embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on Language,Information Cnd computing.2014:328-337. [14]GUO S,WANG Q,WANG B,et al.Semantically smooth know-ledge graph embedding[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2015:84-94. [15]LIN Y,LIU Z,LUAN H,et al.Modeling relation paths for representation learning of knowledge bases[J].arXiv:1506.00379,2015. [16]XIE R,LIU Z,JIA J,et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the Thir-tieth AAAI Conference on Artificial Intelligence.2016:2659-2665. [17]JIANG T,LIU T,GE T,et al.Encoding temporal information for time-aware link prediction[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Proces-sing.2016:2350-2354. [18]KIM Y.Convolutional Neural Networks for Sentence Classification[J].arXiv:1408.5882,2014. [19]PASZKE A,GROSS S,MASSA F,et al.PyTorch:an imperative style,high-performance deep learning library[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:8026-8037. [20]SHUTOVA E,KIELA D,MAILLARD J.Black holes and white rabbits:Metaphor identification with visual features[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:160-170. [21]XIE R,LIU Z,LUAN H,et al.Image-embodied knowledge representation learning[J].arXiv:1609.07028,2016. [22]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [23]MILLER G A.WordNet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41. |
|