计算机科学 ›› 2023, Vol. 50 ›› Issue (8): 170-176.doi: 10.11896/jsjkx.220600070
杨陟卓1, 许玲玲1, 张虎1, 李茹1,2
YANG Zhizhuo1, XU Lingling1, Zhang Hu1, LI Ru1,2
摘要: 机器阅读理解是自然语言处理领域最具挑战性的任务之一。随着深度学习技术的不断发展以及大规模MRC数据集的发布,机器阅读理解模型的性能不断刷新记录。但是以往的模型在逻辑推理、深层语义理解等方面仍存在不足。为解决上述问题,提出了一种基于框架语义和图结构的阅读理解答案抽取方法。该方法首先利用汉语框架网匹配与问句语义相关的候选句;其次提取问题和候选句中的实体,以实体在句子中的依存句法和语义关系构建实体关系图;最后将实体关系图引入图注意网络进行逻辑推理,实现阅读理解答案抽取。在DuReader-robust数据集上的实验结果表明,所提方法取得了比基线模型更好的效果。
中图分类号:
[1]HERMANN K M,TOMÁVS K,GREFENSTETTE E,et al.Teaching Machines to Read and Comprehend[C]//Proceedings of the 29st International Conference on Neural Information Processing Systems.New York:Curran Associate Inc,2015:1693-1701. [2]KADLEC R,SCHMID M,BA JGAR O,et al.Text Understan-ding with the Attention Sum Reader Network[C]//Proceedings of the 54st Annual Meeting of the Association for Computa-tional Linguistics.USA:Association for Computational Linguistics,2016:908-918. [3]DHINGRA B,LIU H,YANG Z,et al.Gated-attention readers for text comprehension[J].arXiv:1606.01549,2016. [4]SEO M,KEMBHAVI A,FARHADI A,et al.Bidirectional Attention Flow for Machine Comprehension[J].arXiv:1611.01603,2016. [5]WANG W,YANG N,WEI F,et al.Gated self-matching net-works for reading comprehension and question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).2017:189-198. [6]YU A W,DOHAND,LUONG M T,et al.QANet:Combining Local Convolution with Global Self-Attention for Reading Comprehension[C]//Proceedings of International Conference on Learning Representations(ICLR2018).UAS:ICLR Organizing Committee,2018:1-8. [7]RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD:100 000+Questions for Machine Comprehension of Text[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.USA:Association for Computational Linguistics,2016:2383-2392. [8]DUNN M,SAGUN L,HIGGINS M,et al.SearchQA:A New Q&A Dataset Augmented with Context from a Search Engine[J].arXiv:1704.05179,2017. [9]TANG H,LI H,LIU J,et al.DuReader_robust:A ChineseDataset Towards Evaluating Robustness and Generalization of Machine Reading Comprehension in Real-World Applications[J].arXiv:2004.11142,2020. [10]VELIKOVI P,CUCURULL G,CASANOVA A,et al.GraphAttention Networks[C]//Proceedings of International Confe-rence on Learning Representations(ICLR 2018).USA:ICLR Organizing Committee,2018:1-11. [11]PENG H,LI J,HE Y,et al.Large-scale hierarchical text classification with recursively regularized deep graph-cnn[C]//Proceedings of the 2018 World Wide Web Conference.2018:1063-1072. [12]SONG L,WANG Z,YU M,et al.Exploring graph-structured passage representation for multi-hopreading comprehension with graph neural networks [J].arXiv:1809.02040,2018. [13]DE CAO N,AZIZW,TITOV I.Question answering by reaso-ning across documents with graph convolutional networks[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1.2019:2306-2317. [14]FANG Y,SUN S,GAN Z,et al.Hierarchical Graph Network for Multi-hop Question Answering[J].arXiv:1911.03631,2019. [15]XIAO Y,QU Y,QIU L,et al.Dynamically Fused Graph Network for Multi-hop Reasoning[C]//Proceedings of the 57st Annual Meeting of the Association for Computational Linguistics.2019:6140-6150. [16]LI R.Research on Frame Semantic Structure Analysis Techno-logy for Chinese Sentences[D].Taiyuan:Shanxi University,2012. [17]LIU M.Sentence similarity calculation based on word vector and its application in case-based machinetranslation [D].Beijing:Beijing Institute of Technology,2015. [18]FILLMORE C J.Frame semantics and the nature of language[J].Annals of the New York Academy of Sciences:Conference on the Origin and Development of Language and Speech,1976,280(1):20-32. [19]BAKER C F,FILLMORE C J,LOWE J B.The BerkeleyFrameNet Project[C]//Proceedings of the 17th International Conference on Computational Linguistcs-Volume 1.Association for Computational Linguistics,2002:86-90. [20]MANNING C D,SURDEANU M,BAUER J,et al.The Stanford CoreNLP Natural LanguageProcessing Toolkit[C]//Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics:System Demonstrations.2014:55-60. [21]LIU Q,LI S J.Vocabulary semantic similarity calculation based on HowNet[J].Chinese Computational Linguistics,2002,7(2):59-76. [22]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.USA:Association for Computational Linguistics,2019:4171-4186 [23]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Me-mory[J].Neural Computation,1997,9(8):1735-1780. [24]LAN Z,CHEN M,GOODMAN S,et al.ALBERT:a lite BERT for self-supervised learning of language representations [EB/OL].(2020-02-09) [2021-06-07].https://arxiv.org/abs/1909.11942v6. [25]SUN Y,WANG S H,LI Y K,et al.ERNIE:enhanced representation through knowledge integration[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.USA:Association for Computational Linguistics,2019:1441-1451. [26]CUI Y M,CHE W X,LIU T,et al.Pre-training with whole word masking for Chinese BERT [EB/OL].(2019-10-29) [2021-06-07].https://arxiv.org/abs/1906.08101v2. [27]LIU Y,OTT M,GOYAL N,et al.RoBERTa:a robustly optimized BERT pretraining approach [EB/OL].(2019-07-26) [2021-06-07].https://arxiv.org/abs/1907.11692v1. [28]YANG Z L,DAI Z H,YANG Y M,et al.XLNet:generalized autoregressive pretraining for language understanding[C]//Proceedings of 33rd Conference on Neural Information Proces-sing Systems(NeurIPS 2019).Canada:Neural Information Processing Systems Foundation,Inc,2019:5754-5764. |
|