计算机科学 ›› 2023, Vol. 50 ›› Issue (8): 184-192.doi: 10.11896/jsjkx.220700082
朱秀宝, 周刚, 陈静, 卢记仓, 向怡馨
ZHU Xiubao, ZHOU Gang, CHEN Jing, LU Jicang, XIANG Yixin
摘要: 从非结构化文本中抽取实体和关系是自动构建知识库的基础工作。现有的工作主要采用联合学习方法来解决嵌套实体、重叠关系、冗余计算和曝光偏差等问题,但单个模型仅在部分问题上表现出色,尚无模型可以同时解决上述问题。因此,提出了一种基于增强序列标注策略的单阶段联合实体关系抽取方法(A Token With Multi-labels Entity and Relation Extraction, ATMREL)。首先,设计了一种增强序列标注策略,将文本中的每个单词标记为多个标签,标签包含每个单词在实体中的位置、关系类型和实体位置信息。然后,将每个单词的标签预测转化为多标签分类任务,同时将联合实体关系抽取转化为序列标注任务。最后,为增强实体对之间的依赖关系,引入实体相关矩阵,用于对抽取结果进行剪枝,以提升模型抽取效果。实验结果表明,与CasRel和TPLinker模型相比,ATMREL模型在NYT和WebNLG数据集上的参数量减少了3.1×106~5.4×106,平均推理速度提升了2~4.2倍,F1值提升了0.5%~2.1%。
中图分类号:
[1]LIU Q,LI Y,DUAN H,et al.Knowledge graph construction techniques [J].Journal of Computer Research and Development,2016,53(3):582-600. [2]ZELENKO D,AONE C,RICHARDELLA A.Kernel methodsfor relation extraction[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing.Philadelphia:ACL,2002:71-78. [3]CHAN Y S,ROTH D.Exploiting syntactico-semantic structures for relation extraction[C]//The 49th annual Meeting of the Association for Computational Linguistics.Portland:ACL,2011:551-560. [4]GORMLEY M R,YU M,DREDZE M.Improved relation extraction with feature-rich compositional embedding models[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Lisbon:ACL,2015:1774-1784. [5]MIWA M,BANSAL M.End-to-end relation extraction usinglstms on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Berlin:ACL,2016:1105-1116. [6]YU X F,LAM W.Jointly identifying entities and extracting relations in encyclopedia text via a graphical model approach[C]//International Conference on Computational Linguistics.Beijing:Chinese Information Processing Society of China,2010:1399-1407. [7]LI Q,JI H.Incremental joint extraction of entity mentions and relations[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.Baltimore:ACL,2014:402-412. [8]MIWA M,SASAKI Y.Modeling joint entity and relation extraction with table representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing.Doha:ACL,2014:1858-1869. [9]REN X,WU Z Q,HE W Q,et al.Cotype:joint extraction of typed entities and relations with knowledge bases[C]//Procee-dings of the 26th International Conference on World Wide Web.Perth:ACM,2017:1015-1024. [10]ZHENG S C,WANG F,BAO H Y,et al.Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Vancouver:ACL,2017:1227-1236. [11]ZENG X R,ZENG D J,HE S Z,et al.Extracting relational facts by an end-to-end neural model with copy mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne:ACL,2018:506-514. [12]SUI D B,CHEN Y B,LIU K,et al.Joint entity and relation extraction with set prediction networks [J].arXiv:2011.01675,2020 [13]FU T J,LI P H,MA W Y,et al.GraphRel:modeling text as relational graphs for joint entity and relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Florence:ACL,2019:1409-1418. [14]YU B W,ZHANG Z Y,SHU X B,et al.Joint extraction of entities and relations based on a novel decomposition strategy[C]//ECAI 2020-24th European Conference on Artificial Intelligence.Santiago de Compostela:IOS Press,2020:2282-2289. [15]ZENG X R,HE S Z,ZENG D J,et al.Learning the extraction order of multiple relational facts in a sentence with reinforcement learning[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Hong Kong:ACL,2019:367-377. [16]YU K Q,HUANG F,WU Q,et al.Joint Extraction Method for Chinese Entity Relationship Based on Bidirectional Semantics[J].Computer Engineering,2023,49(1):92-99,112. [17]WANG Y J,SUN C Z,WU Y B,et al.Unire:a unified labelspace for entity relation extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.ACL,2021:220-231. [18]YAN Z H,ZHANG C,FU J L,et al.A partition filter network for joint entity and relation extraction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.Punta Cana:ACL,2021:185-197. [19]JI B,YU J,LI S S,et al.Span-based joint entity and relation extraction with attention-based span-specific and contextual semantic representations[C]//Proceedings of the 28th International Conference on Computational Linguistics.Barcelona:International Committee on Computational Linguistics,2020:88-99. [20]BEKOULIS G,DELEU J,DEMEESTER T,et al.Joint entity recognition and relation extraction as a multi-head selection problem [J].Expert Systems with Applications,2018,114:34-45. [21]WEI Z P,SU J L,WANG Y,et al.A novel cascade binary tagging framework for relational triple extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computa-tional Linguistics.ACL,2020:1476-1488. [22]ZHENG H Y,WEN R,CHEN X,et al.PRGC:potential relation and global correspondence based joint relational triple extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.ACL,2021:6225-6235. [23]MA L B,REN H M,ZHANG X L.Effective cascade dual-deco-der model for joint entity and relation extraction [J].arXiv:2106.14163,2021. [24]WANG Y C,YU B,ZHANG Y Y,et al.TPLinker:single-stage joint extraction of entities and relations through token pair lin-king[C]//Proceedings of the 28th International Conference on Computational Linguistics.Barcelona:International Committee on Computational Linguistics,2020:1572-1582. [25]SHANG Y M,HUANG H Y,MAO X L.Onerel:joint entityand relation extraction with one module in one step [J].arXiv:2203.05412,2022. [26]WANG J,SHOU L D,CHEN K,et al.Pyramid:a layered model for nested named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.ACL,2020:5918-5928. [27]HUANG H Y,SHANG Y M,SUN X,et al.Three birds,onestone:a novel translation based framework for joint entity and relation extraction [J].Knowledge-Based Systems,2022,236:107677. [28]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space [J].arXiv:1301.3781,2013. [29]PENNINGTON J,SOCHER R,MANNING C D.Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing.Doha:ACL,2014:1532-1543. [30]JOULIN A,GRAVE E,BOJANOWSKI P,et al.Bag of tricksfor efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.Valencia:ACL,2017:427-431. [31]DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics.Minneapolis:ACL,2019:4171-4186. [32]RIEDEL S,YAO L M,MCCALLUM A.Modeling relations and their mentions without labeled text[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Barcelona:Springer,2010:148-163. [33]GARDENT C,SHIMORINA A,NARAYAN S S,et al.Creating training corpora for nlg micro-planners[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Vancouver:ACL,2017:179-188. |
|