计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 1-10.doi: 10.11896/jsjkx.201100165

• 智能计算 • 上一篇    下一篇

嵌套命名实体识别研究进展

余诗媛1,2, 郭淑明2, 黄瑞阳2, 张建朋2, 苏珂1,2   

  1. 1 郑州大学软件学院 郑州450001
    2 国家数字交换系统工程技术研究中心 郑州450002
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 郭淑明(18637112122@163.com)
  • 作者简介:ysy8023cl@163.com
  • 基金资助:
    国家自然科学基金青年基金项目(620023840)

Overview of Nested Named Entity Recognition

YU Shi-yuan1,2, GUO Shu-ming2, HUANG Rui-yang2, ZHANG Jian-peng2, SU Ke1,2   

  1. 1 School of Software,Zhengzhou University,Zhengzhou 450001,China
    2 National Digital Switching System Engineering and Technological R&D Center,Zhengzhou 450002,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:YU Shi-yuan,born in 1996,postgraduate.Her main research interests include natural language processing and know-ledge graph.
    GUO Shu-ming,born in 1977,Ph.D,master supervisor,associate researcher.His main research interests include data science and radio communication and big data technology.
  • Supported by:
    Youth Program of National Natural Science Foundation of China(620023840).

摘要: 嵌套命名实体之间蕴含着丰富的语义关系与结构信息,对于关系抽取、事件抽取等下游任务的执行至关重要。近年来,深度学习技术由于能够获取文本中更为丰富的表征信息,在文本信息抽取模型的精确度上已经逐渐超过了传统基于规则的方法,因此许多学者开展了基于深度学习的嵌套命名实体识别技术研究,并获得了目前最先进的性能。对现有的嵌套命名实体识别技术进行了全面的综述,介绍了嵌套命名实体识别最具代表性的方法及最新应用技术,并对未来面临的挑战和发展方向进行了探讨和展望。

关键词: 超图, 跨度, 命名实体识别, 嵌套命名实体, 序列标注

Abstract: There are rich semantic relations and structural information between nested named entities,which is very important for the implementation of downstream tasks such as relation extraction and event extraction.The accuracy of text information extraction model has gradually exceeded the traditional rule-based method.Therefore,many scholars have carried out research on nested named entity recognition technology based on deep learning,and obtained the most advanced performance.This paper reviews the existing nested named entity recognition technology,This paper gives a comprehensive review of the existing nested named entity recognition technology,introduces the most representative methods and the latest application technology of nested named entity recognition,and discusses and prospects the challenges and development direction in the future.

Key words: Hypergraph, Named entity recognition, Nested named entities, Sequence labeling, Span

中图分类号: 

  • TP312
[1]DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[2]MITCHELL A,STRASSEL S,HUANG S D,et al.ACE 2004 Multilingual Training Corpuse[EB/OL].https://catalog.ldc.upenn.edu/LDC2005T09.
[3]WALKER C,STRASSEL S,MEDERO J,et al.ACE 2005 Multilingual Training Corpus[EB/OL].https://catalog.ldc.upenn.edu/LDC2006T06.
[4]ZHANG J,SHEN D,ZHOU G,et al.Enhancing HMM-based biomedical named entity recognition by studying special phenomena[J].Journal of Biomedical Informatics,2004,37(6):411-422.
[5]ZHOU G D.Recognizing names in biomedical texts using mutual information independence model and SVM plus sigmoid[J].International Journal of Medical Informatics,2006,75(6):456-467.
[6]ZHOU G D,ZHANG J,SU J,et al.Recognizing Names in Biomedical Texts:a Machine Learning Approach[J].Bioinfor-matics,2004,20(7):1178-1190.
[7]KIM J D,OHTA T,TATEISI Y,et al.GENIA corpus a semantically annotated corpus for bio-text mining[J].Bioinformatics,2003,19:180-182.
[8]ALEX B,HADDOW B,GROVER C.Recognizing Nested Named Entities in Biomedical Text[C]//Biological,Translational,And Clinical Language Processing.2017:65-72.
[9]FINKEL J R,MANNING C D.Nested Named Entity Recognition[C]//Empirical Methods in Natural Language Processing.2009:141-150.
[10]MUIS A O,LU W.Labeling Gaps Between Words:Recognizing Overlapping Mentions With Mention Separators[C]//Procee-dings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:2608-2618.
[11]WANG B,LU W,Neural Segmental Hypergraphs for Overlapping Mention Recognition[C]//Proceedings of the 2018 Confe-rence on Empirical Methods in Natural Language Processing.2018:204-214.
[12]KATIYAR A,CARDIE C.Nested Named Entity RecognitionRevisited[C]//North American Chapter of the Association for Computational Linguistics.2018:861-871.
[13]JU M,MIWA M,ANANIADOU S,et al.A Neural LayeredModel for Nested Named Entity Recognition[C]//North Ameri-can Chapter of the Association For Computational Linguistics.2018:1446-1459.
[14]STRAKOVA J,STRAKA M,HAJIC J,et al.Neural Architectures for Nested NER Through Linearization[C]//Meeting of the Association for Computational Linguistics.2019:5326-5331.
[15]TAKASHI S,EDUARD H.Nested Named Entity Recognition via Second-best Sequence Learning and Decoding[J].Transactions of the Association for Computational Linguistics,2020,8:605-620.
[16]XU M,JIANG H,WATCHARA W S,et al.A Local Detection Approach for Named Entity Recognition and Mention Detection[C]//Meeting of the Association for Computational Linguistics.2017:1237-1247.
[17]ZHANG S L,JIANG H,XU M B,et al.The Fixed-Size Ordinally-Forgetting Encoding Method for Neural Network Language Models[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2:Short Papers).2015:495-500.
[18]SOHRAB M G,MIWA M.Deep Exhaustive Model for Nested Named Entity Recognition[C]//Empirical Methods In Natural Language Processing.2018:2843-2849.
[19]FISHER J,VLACHOS A.Merge And Label:A Novel Neural Network Architecture For Nested NER[C]//Meeting of the Association for Computational Linguistics.2019:5840-5850.
[20]XIA C Y,ZHANG C W,YANG T,et al.Multi-Grained Named Entity Recognition[C]//Proceedings of the 57th Annual Mee-ting of the Association for Computational Linguistics.2019:1430-1440.
[21]LUAN Y,WADDEN D,HE L,et al.A General Framework for Information Extraction Using Dynamic Span Graphs[C]//North American Chapter of the Association for Computational Linguistics.2019:3036-3046.
[22]ZHENG C,CAI Y,XU J,et al.A Boundary-Aware NeuralModel for Nested Named Entity Recognition[C]//International Joint Conference on Natural Language Processing.2019:357-366.
[23]LIN H,LU Y,HAN X,et al.Sequence-To-Nuggets:Nested Entity Mention Detection via Anchor-Region Networks[C]//Meeting of the Association for Computational Linguistics.2019:5182-5192.
[24]TAN C,QIU W,CHEN M,et al.Boundary Enhanced NeuralSpan Classification for Nested Named Entity Recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:9016-9023.
[25]WANG B,LU W,WANG Y,et al.A Neural Transition-Based Model for Nested Mention Recognition[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:1011-1017.
[26]LI X,FENG J,MENG Y,et al.A Unified MRC Framework for Named Entity Recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:5849-5859.
[27]LUO Y,ZHAO H.Bipartite Flat-Graph Network for NestedNamed Entity Recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:6408-6418.
[28]LUAN Y,HE L,OSTENDORF M,et al.Multi-Task Identification of Entities,Relations,and Coreference for Scientific Know-ledge Graph Construction [C]//Empirical Methods in Natural Language Processing.2018:3219-3232.
[29]RINGLAND N,DAI X,KARIMI S,et al.NNE:A Dataset For Nested Named Entity Recognition In English Newswire[C]//Meeting of the Association for Computational Linguistics.2019:5176-5181.
[30]KARIMI S,METKEJIMENEZ A,KEMP M,et al.Cadec:ACorpus of Adverse Drug Event Annotations[J].Journal of Biomedical Informatics,2015,55:73-81.
[31]ZHENG S,WANG F,BAO H,et al.Joint Extraction of Entities And Relations Based On A Novel Tagging Scheme [C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1227-1236.
[1] 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥.
军事指控保障领域命名实体识别语料库的构建
Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support
计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132
[2] 周海榆, 张道强.
面向多中心数据的超图卷积神经网络及应用
Multi-site Hyper-graph Convolutional Neural Networks and Application
计算机科学, 2022, 49(3): 129-133. https://doi.org/10.11896/jsjkx.201100152
[3] 刘凯, 张宏军, 陈飞琼.
基于领域适应嵌入的军事命名实体识别
Name Entity Recognition for Military Based on Domain Adaptive Embedding
计算机科学, 2022, 49(1): 292-297. https://doi.org/10.11896/jsjkx.201100007
[4] 程思伟, 葛唯益, 王羽, 徐建.
BGCN:基于BERT和图卷积网络的触发词检测
BGCN:Trigger Detection Based on BERT and Graph Convolution Network
计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133
[5] 董哲, 邵若琦, 陈玉梁, 翟维枫.
基于BERT和对抗训练的食品领域命名实体识别
Named Entity Recognition in Food Field Based on BERT and Adversarial Training
计算机科学, 2021, 48(5): 247-253. https://doi.org/10.11896/jsjkx.200800181
[6] 张栋, 陈文亮.
基于上下文相关字向量的中文命名实体识别
Chinese Named Entity Recognition Based on Contextualized Char Embeddings
计算机科学, 2021, 48(3): 233-238. https://doi.org/10.11896/jsjkx.191200074
[7] 李向利, 贾梦雪.
基于预处理的超图非负矩阵分解算法
Nonnegative Matrix Factorization Algorithm with Hypergraph Based on Per-treatments
计算机科学, 2020, 47(7): 71-77. https://doi.org/10.11896/jsjkx.200200106
[8] 唐国强,高大启,阮彤,叶琪,王祺.
融入语言模型和注意力机制的临床电子病历命名实体识别
Clinical Electronic Medical Record Named Entity Recognition Incorporating Language Model and Attention Mechanism
计算机科学, 2020, 47(3): 211-216. https://doi.org/10.11896/jsjkx.190200259
[9] 崔丹丹, 刘秀磊, 陈若愚, 刘旭红, 李臻, 齐林.
基于Lattice LSTM的古汉语命名实体识别
Named Entity Recognition in Field of Ancient Chinese Based on Lattice LSTM
计算机科学, 2020, 47(11A): 18-23. https://doi.org/10.11896/jsjkx.200500090
[10] 石春丹, 秦岭.
基于BGRU-CRF的中文命名实体识别方法
Chinese Named Entity Recognition Method Based on BGRU-CRF
计算机科学, 2019, 46(9): 237-242. https://doi.org/10.11896/j.issn.1002-137X.2019.09.035
[11] 郭鹏, 李仁发, 胡慧.
一种基于超图Markov链松弛的聚类学习方法
Clustering Method Based on Hypergraph Morkov Relaxation
计算机科学, 2019, 46(6A): 452-456.
[12] 王旸, 蔡淑琴, 邹新文, 陈梓桐.
质量嵌入的大数据产品生产系统超图模型及其生产线决策研究
Quality-embedded Hypergraph Model for Big Data Product Manufacturing System and Decision for Production Lines
计算机科学, 2019, 46(2): 11-17. https://doi.org/10.11896/j.issn.1002-137X.2019.02.002
[13] 王子牛, 姜猛, 高建瓴, 陈娅先.
基于BERT的中文命名实体识别方法
Chinese Named Entity Recognition Method Based on BERT
计算机科学, 2019, 46(11A): 138-142.
[14] 叶军,金忠.
基于对偶超图正则化的概念分解算法及其在数据表示中的应用
Hypergraph Dual Regularization Concept Factorization Algorithm and Its Application in Data Representation
计算机科学, 2017, 44(7): 309-314. https://doi.org/10.11896/j.issn.1002-137X.2017.07.056
[15] 杨迎辉,李建华,南明莉,崔琼,王宏.
基于模体的网络化作战信息流转动态超图模型
Networked Operational Information Flowing Dynamic Hypergraph Model Based on Motif
计算机科学, 2016, 43(8): 30-35. https://doi.org/10.11896/j.issn.1002-137X.2016.08.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!