计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 135-145.doi: 10.11896/jsjkx.230700127
肖杨1, 秦建阳1, 李肯立2, 王鸽3, 李瑞4, 廖清1,5
XIAO Yang1, QIN Jianyang1, LI Kenli2, WANG Ge3, LI Rui4, LIAO Qing1,5
摘要: 准确的城市区域交通流量预测对市区车辆调度、公交系统优化等具有重要指导意义。目前,大多数现有的交通流量预测方法只考虑规则网格区域上单一种类的交通流量预测,忽略了交通网络中空间的不规则性和异质性以及不同出行模式交通流的交互性。针对上述问题,提出了一种基于图对比学习的多模态交通流量协同预测方法(CoF-MGCL),以揭示各类出行方式之间的交互对不规则异构区域的交通需求的影响。具体而言,根据现实中城市的不规则区域采集多模态流量数据,包括各类出行模式流量(如自行车和出租车流量)和总流量;并对不规则区域构建多关系异构图,包括地理邻近和功能相似关系。通过异构图编码模块,可以结合异构图中不同的关系来学习各区域各类交通流量的高质量表征信息。学习到的单一交通流量表征经过注意力机制加权融合后与总交通流量表征进行图对比学习,以捕获不同出行模式之间的交互关系。最后,使用互信息约束实现多模态流量的协同预测,确保多模态信息学习最大化。为了实现不规则区域的多模态交通流量预测,自行构建了新的纽约市曼哈顿区和芝加哥市两地多模态交通流量数据集,并在此基础上进行实验。实验结果表明,所提方法可以结合现有的单模态交通流量预测模型,在均方误差(RMSE)和平均绝对误差(MAE)两个预测指标上实现0.43%~12.13%的性能提升,验证了所提方法的有效性。
中图分类号:
[1]FU R,ZHANG Z,LI L.Using LSTM and GRU neural network methods for traffic flow prediction[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation.2016:324-328. [2]ZHANG J,ZHENG Y,QI D.Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017:1655-1661. [3]LIANG Y,OUYANG K,SUN J,et al.Fine-grained urban flow prediction[C]//Proceedings of the Web Conference 2021.2021:1833-1845. [4]OKUTANI I,STEPHANEDES Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research Part B:Methodological,1984,18(1):1-11. [5]WU C H,HO J M,LEE D T.Travel-time prediction with sup-port vector regression[J].IEEE transactions on Intelligent Transportation Systems,2004,5(4):276-281. [6]VAN LINT J W C,VAN HINSBERGEN C.Short-term traffic and travel time prediction models[J].Artificial Intelligence Applications to Critical Transportation Issues,2012,22(1):22-41. [7]ZHAO W,GAO Y,JI T,et al.Deep temporal convolutional networks for short-term traffic flow forecasting[J].IEEE Access,2019,7:114496-114507. [8]ZHANG C,PATRAS P.Long-term mobile traffic forecastingusing deep spatio-temporal neural networks[C]//Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing.2018:231-240. [9]YAO H,TANG X,WEI H,et al.Revisiting spatial-temporalsimilarity:A deep learning framework for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:5668-5675. [10]WU Z,PAN S,LONG G,et al.Graph wavenet for deep spatial-temporal graph modeling[J].arXiv:1906.00121,2019. [11]YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting[C]//Proceedings of the International Joint Conference on Artificial Intelligence.2018:3634-3640. [12]GUO K,HU Y,SUN Y,et al.Hierarchical graph convolutionnetwork for traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(1):151-159. [13]GUO S,LIN Y,FENG N,et al.Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:922-929. [14]XING D,ZHAO C,WANG G.A Spatial-Temporal AttentionMulti-Graph Convolution Network for Ride-Hailing Demand Prediction Based on Periodicity with Offset[J].arXiv:2203.12505,2022. [15]GENG X,LI Y,WANG L,et al.Spatiotemporal multi-graphconvolution network for ride-hailing demand forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:3656-3663. [16]SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[C]//Proceedings of the Advances in Neural Information Processing Systems.2014. [17]SONG C,LIN Y,GUO S,et al.Spatial-temporal synchronous graph convolutional networks:A new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:914-921. [18]ZHENG C,FAN X,WANG C,et al.Gman:A graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:1234-1241. [19]WU Z,PAN S,LONG G,et al.Connecting the dots:Multiva-riate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining.2020:753-763. [20]CHEN C,LIU Y,CHEN L,et al.Bidirectional spatial-temporal adaptive transformer for Urban traffic flow forecasting[J/OL].IEEE Transactions on Neural Networks and Learning Systems,2022:1-13. https://ieeexplore.ieee.org/document/9810964. [21]LI F,FENG J,YAN H,et al.Dynamic graph convolutional recurrent network for traffic prediction:Benchmark and solution[J].ACM Transactions on Knowledge Discovery from Data,2023,17(1):1-21. |
|