计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 146-155.doi: 10.11896/jsjkx.221000063
王家祺1, 李文根1, 关佶红1, 邢婷2, 魏小敏2, 邵冰清2, 付宠洁2
WANG Jiaqi1, LI Wengen1, GUAN Jihong1, XING Ting2, WEI Xiaomin2, SHAO Bingqing2, FU Chongjie2
摘要: 随着知识图谱的不断发展,大量应用于工业界的产业知识图谱应运而生。然而,这些产业知识图谱经常缺乏充足的企业关联关系,如上下游关系、供应关系、合作关系、竞争关系等,导致其应用范围受到极大限制。现有企业关系预测研究大多仅关注知识图谱中三元组本身的结构信息,未能充分利用企业文本描述和企业关联实体的描述等多视角信息。为解决该问题,提出了一种基于知识增强的企业实体关系预测模型KERP。模型首先通过多视角实体特征三元组学习,完善企业实体特征表示;其次,利用图注意力网络获取实体的高阶语义表示,并与TransR模型学习的实体关系低阶语义表示进行融合,进一步增强企业实体及其关系的特征表示;最后,通过二维卷积解码器ConvE实现对企业实体关系的预测。在新能源汽车产业知识图谱数据上的实验分析表明,与现有主流实体关系预测模型相比,KERP在预测企业关系上具有更好的效果,在F1值上有6.7%的提升。此外,在多个公开实体关系预测数据集上的实验结果表明,KERP模型在一般化的实体关系预测任务上也具有较好的通用性。
中图分类号:
[1]CHEN Z,WANG Y,ZHAO B,et al.Knowledge Graph Completion:A Review[J].IEEE Access,2020,8:192435-192456. [2]LI F L,CHEN H,XU G,et al.AliMeKG:Domain knowledge graph construction and application in e-commerce[C]//Procee-dings of the 29th ACM International Conference on Information &Knowledge Management.2020:2581-2588. [3]MOON C,JONES P,SAMATOVA N F.Learning Entity Type Embeddings for Knowledge Graph Completion[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2017:2215-2218. [4]WANG J J,LIU J G,LI Z K.Research on Partnership of SupplyChain Based on Complex Network[J].Chinese Journal of Systems Science,2021,29(3):110-115130. [5]LU Z Z,CHEN Q.Link Prediction of Enterprise Cooperation Relationship in Dynamic Supply Chain Network[J].Computer Engineering and Applications,2022,58(2):265-273. [6]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence.2015. [7]DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [8]ZHANG J Z,HU Y M.Uncovering the Mechanism of Co-Authorship Network Evolution by Link Prediction[J].Information Science,2017,35(7):75-81. [9]LU Z G,CHEN Q.Discovering Potential Partners via Projec-tion-Based Link Prediction in the Supply Chain Network[J].International Journal of Computational Intelligence Systems,2020,13(1):1253-1264. [10]XIE M,WANG T,JIANG Q,et al.Higher-Order NetworkStructure Embedding in Supply Chain Partner Link Prediction[C]//CCF Conference on Computer Supported Cooperative Work and Social Computing.Singapore:Springer,2019:3-17. [11]KERSTING K,RAEDT L D.Adaptive Bayesian logic programs[C]//International Conference on Inductive Logic Programming.Berlin:Springer,2001:104-117. [12]LAO N,COHEN W W.Relational retrieval using a combination of path-constrained random walks[J].Machine Learning,2010,81(1):53-67. [13]WANG Q,MAO Z,WANG B,et al.Knowledge graph embedding:A survey of approaches and applications[J].IEEE Tran-sactions on Knowledge and Data Engineering,2017,29(12):2724-2743. [14]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2.2013:2787-2795. [15]JI G,HE S,XU L,et al.Knowledge graph embedding via dy-namic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(volume 1:Long papers).2015:687-696. [16]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//ICML.2011. [17]TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Conference on Machine Learning.PMLR,2016:2071-2080. [18]GU J,WANG Z,KUEN J,et al.Recent advances in convolu-tional neural networks[J].Pattern Recognition,2018,77:354-377. [19]NGUYEN D Q,NGUYEN T D,NGUYEN D Q,et al.A novel embedding model for knowledge base completion based on con-volutional neural network[J].arXiv:1712.02121,2017. [20]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Euro-pean Semantic Web Conference.Cham:Springer,2018:593-607. [21]SHANG C,TANG Y,HUANG J,et al.End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:3060-3067. [22]NATHANI D,CHAUHAN J,SHARMA C,et al.Learning attention-based embeddings for relation prediction in knowledge graphs[J].arXiv:1906.01195,2019. [23]XIAO H,HUANG M,MENG L,et al.SSP:semantic space projection for knowledge graph embedding with text descriptions[C]//Thirty-First AAAI Conference on Artificial Intelligence.2017. [24]XIE R,LIU Z,JIA J,et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. [25]ZHANG Z,CAO L,CHEN X,et al.Representation learning of knowledge graphs with entity attributes[J].IEEE Access,2020,8:7435-7441. [26]LIN Z F,OU S Y.Research on Relation Prediction in Know-ledge Graphs by Fusing Structure and Text Features[J].Libraryand Information Service,2020,64(21):99-110. [27]ZHAI S P,WANG S H,SHANG D R,etal.An adaptive model for knowledge representation with entity description[J].Journal of Chinese Information Processing,2021,35(01):43-53. [28]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(Jan):993-1022. [29]SUN X L,ZHUANG W H,LI B,et al.Research on Characteristics and Cooperation Prediction of Industry-University-Research lnstitute Collaboration Based on Patents inRegional Equipment Manufacturing Industry[J].Science and Management,2020,40(1):31-40. [30]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013. [31]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[J].arXiv:1710.10903,2017. [32]SUN Z,VASHISHTH S,SANYAL S,et al.A Re-evaluation of Knowledge Graph Completion Methods[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:5516-5522. [33]XU B,XU Y,LIANG J,et al.CN-DBpedia:A never-ending Chinese knowledge extraction system[C]//International Confe-rence on Industrial,Engineering and Other Applications of Applied Intelligent Systems.Springer,2017:428-438. [34]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. |
|