计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230300012-7.doi: 10.11896/jsjkx.230300012
张禹1, 曹熙卿2,3, 钮赛赛2,3, 许鑫磊1, 张倩1, 王喆1
ZHANG Yu1, CAO Xiqing2,3, NIU Saisai2,3, XU Xinlei1, ZHANG Qian1, WANG Zhe1
摘要: 灾难性遗忘问题在增量学习场景中普遍存在,而对旧知识的遗忘会严重影响模型在整个任务序列上的平均性能。因此,针对在增量学习过程中原型偏移引起的旧知识遗忘问题,提出了一种基于原型回放和动态更新的类增量学习方法。该方法在原型更新阶段保留新类的原型后,进一步采用动态更新策略对旧类的原型进行实时更新。具体地,在学习新任务后,该策略基于当前可访问数据的已知偏移,来实现在旧类原型中存在的未知偏移的近似估计,并最终完成对旧类原型的更新,从而缓解原始的旧类原型与当前的特征映射间的不匹配。在CIFAR-100和Tiny-ImageNet数据集上的实验结果表明,所提出的基于原型回放和动态更新的类增量学习方法能够有效地减少对旧知识的灾难性遗忘,提高模型在类增量学习场景中的分类性能。
中图分类号:
[1]AKHTAR N,MIAN A.Threat of adversarial attacks on deep learning in computer vision:A survey[J].IEEE Access,2018,6:14410-14430. [2]HE T,ZHANG Z,ZHANG H,et al.Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:558-567. [3]BAEK S H,HEIDE F.Polka lines:Learning structured illumination and reconstruction for active stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:5757-5767. [4]FAYEK H M,LECH M,CAVEDON L.Evaluating deep learning architectures for speech emotion recognition[J].Neural Networks,2017,92:60-68. [5]LIPPI M,MONTEMURRO M A,DEGLI ESPOSTI M,et al.Natural language statistical features of LSTM-generated texts[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(11):3326-3337. [6]DABBAGH N,CASTANEDA L.The PLE as a framework for developing agency in lifelong learning[J].Educational Technology Research and Development,2020,68(6):3041-3055. [7]ZHANG T,WANG X,LIANG B,et al.Catastrophic interference in reinforcement learning:A solution based on context division and knowledge distillation[J].IEEE Transactions on Neural Networks and Learning Systems,2022:1-15. [8]MASANA M,LIU X,TWARDOWSKI B,et al.Class-incremental learning:survey and performance evaluation on image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):5513-5533. [9]CHEN H,WANG Y,HU Q.Multi-Granularity Regularized Re-Balancing for Class Incremental Learning[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(7):7263-7277. [10]LI K,WAN J,YU S.CKDF:Cascaded knowledge distillation framework for robust incremental learning[J].IEEE Transactions on Image Processing,2022,31:3825-3837. [11]LIN H,FENG S,LI X,et al.Anchor Assisted Experience Replay for Online Class-Incremental Learning[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,33(5):2217-2232. [12]LIN G,CHU H,LAI H.Towards better plasticity-stabilitytrade-off in incremental learning:a simple linear connector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:89-98. [13]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].Proceedings of the national academy of sciences,2017,114(13):3521-3526. [14]ALJUNDI R,BABILONI F,ELHOSEINY M,et al.Memoryaware synapses:Learning what (not) to forget[C]//Proceedings of the European Conference on Computer Vision.2018:139-154. [15]JOSEPH K J,KHAN S,KHAN F S,et al.Energy-based Latent Aligner for Incremental Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:7452-7461. [16]YOON J,YANG E,LEE J,et al.Lifelong Learning with Dy-namically Expandable Networks[C]//International Conference on Learning Representations.2018. [17]YAN S,XIE J,HE X.Der:Dynamically expandable representation for class incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3014-3023. [18]MALLYA A,DAVIS D,LAZEBNIK S.Piggyback:Adapting a single network to multiple tasks by learning to mask weights[C]//Proceedings of the European Conference on Computer Vision.2018:67-82. [19]REBUFFI S A,KOLESNIKOV A,SPERL G,et al.icarl:Incremental classifier and representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2017:2001-2010. [20]SHIN H,LEE J K,KIM J,et al.Continual learning with deep generative replay[C]//Advances in Neural Information Processing Systems.2017:1-10. [21]BELOUADAH E,POPESCU A.Il2m:Class incremental learning with dual memory[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:583-592. [22]ZHU F,ZHANG X Y,WANG C,et al.Prototype augmentation and self-supervision for incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:5871-5880. [23]YU L,TWARDOWSKI B,LIU X,et al.Semantic drift compensation for class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6982-6991. [24]LEE H,HWANG S J,SHIN J.Self-supervised label augmentation via input transformations[C]//International Conference on Machine Learning.2020:5714-5724. [25]YANG K,YAU J H,LI F F,et al.A study of face obfuscation in imagenet[C]//International Conference on Machine Learning.2022:25313-25330. [26]ULLAH A,ELAHI H,SUN Z,et al.Comparative analysis ofAlexNet,ResNet18 and SqueezeNet with diverse modification and arduous implementation[J].Arabian Journal for Science and Engineering,2022,47:2397-2417. [27]CASTRO F M,MARÍN-JIMÉNEZ M J,GUIL N,et al.End-to-end incremental learning[C]//Proceedings of the European Conference on Computer Vision.2018:233-248. [28]HOU S,PAN X,LOY C C,et al.Learning a unified classifier in-crementally via rebalancing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:831-839. [29]CHATZIMPARMPAS A,MARTINS R M,KERREN A.t-visne:Interactive assessment and interpretation of t-sne projections[J].IEEE Transactions on Visualization and Computer Graphics,2020,26(8):2696-2714. |
|