计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230300013-9.doi: 10.11896/jsjkx.230300013
谢菲, 高树辉
XIE Fei, GAO Shuhui
摘要: 深度伪造技术因“低门槛、高效率、高仿真”等特性而被滥用于伪造身份,引发的个人信息安全问题给公共安全治理带来了严峻挑战。目前深度伪造图像主流检测以卷积特征为主,量化特征应用较少,基于量化特征占用空间小,运行成本低等优点,探究图像各颜色分量上的纹理、颜色特征与图像真伪的关联程度,筛选有效特征进行深伪图像自动检测,研究量化特征在深伪图像鉴定方面的应用价值。对深度伪造人脸数据集ForgeryNet中的40 000幅实验样本图像进行分组实验,提取各组图像在Gray,YCrCb,Lab,HSV和RGB颜色空间上的纹理特征和颜色特征,利用多元统计法筛选既具有显著差异又具有相关性的特征,然后用XGBoost、逻辑回归分类器、线性SVM、多层感知机和TabNet进行算法验证,并与主流卷积神经网络进行对比分析。在5类算法中,XGBoost和LSVM分类效果较好;MLP和LP效果较差;TabNet效果不稳定,受分类类型影响较大,检测精度在52%~89%之间。数理统计筛选所得特征下的深伪图像检测精度显著提高,在真伪图像组,在真伪图像组,XGBoost算法在筛选特征和纹理特征时的检测精度比所有特征时分别提高1.10%和1.43%,LSVM和MLP两种算法在纹理特征时的检测精度比在所有特征时分别提高了0.12%和0.10%。利用颜色空间下筛选的量化特征,其检测精度均高于主流卷积神经网络的检测精度,且纹理特征的检测结果优于颜色特征,对身份替换深伪图像更易识别。相比图像卷积特征,量化特征具有较强的解释性,在鉴定领域具有较高的利用价值。
中图分类号:
[1]KIETZMANN J H,MILLS A J,PLANGGER K.Deepfakes:perspectives on the future “reality” of advertising and branding[J].International Journal of Advertising,2020,40:473-485. [2]FANG Y M.Challenges and Solutions of Deepfake to the Security of Face Recognition Payment System[J].FinTech Time,2020,28(3):13-17. [3]GUO J L,WANG H R,DOU J S,et al.Development and military application of deep forgery generation and recognition technology[C]//The first Conference of Systems Engineering-New Generation of Intelligent Technology and Systems Engineering.2019:11. [4]PENG C L,GAO X B,WANG N N,et al.Deep visual identity forgery and detection[J].Scientia Sinica(Informationis),2021,51(9):1451-1474. [5]LIU Z,QI X,JIA J,et al.Global Texture Enhancement for Fake Face Detection in the Wild[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:8057-8066. [6]MCCLOSKEY S,ALBRIGHT M.Detecting GAN-generatedImagery using Color Cues[J].arXiv:1812,08247,2018. [7]ZHOU P,HAN X,MORARIUV I,et al.Two-Stream NeuralNetworks for Tampered Face Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).2017:1831-1839. [8]LI Y,LYU S.Exposing DeepFake Videos By Detecting FaceWarping Artifacts[J].arXiv:1811.00656,2019. [9]KHALID H,WOO S S.OC-FakeDect:Classifying DeepfakesUsing One-class Variational Autoencoder[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).2020:2794-2803. [10]CHEN C,MCCLOSKEY S,YU J.Focus Manipulation Detection via Photometric Histogram Analysis[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:1674-1682. [11]CHANG X,WU J,YANG T,et al.DeepFake Face Image Detection based on Improved VGG Convolutional Neural Network[C]//The 39th China Control Conference.Shenyang,China,2020. [12]MATERN F,RIESS C,STAMMINGER M.Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations[C]//2019 IEEE Winter Applications of Computer Vision Workshops(WACVW).2019:83-92. [13]SONGSRI-IN K,ZAFEIRIOU S.Complement Face ForensicDetection and Localization with FacialLandmarks[J].arXiv:1910.05455,2019. [14]YANG X,LI Y,QI H,et al.Exposing GAN-synthesized Faces Using Landmark Locations[C]//Proceedings of the ACM Workshop on Information Hiding and Multimedia Security.2019. [15]YANG X,LI Y,LYU S.Exposing Deep Fakes Using Inconsistent Head Poses[C]//2019 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2019 ).2019:8261-8265. [16]HU S,LI Y,LYU S.Exposing GAN-Generated Faces Using In-consistent Corneal Specular Highlights[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2021).2021:2500-2504. [17]LEE S Y,TARIQ S,SHIN Y,et al.Detecting handcrafted facial image manipulations and GAN-generated facial images using Shallow-FakeFaceNet[J].Applied Soft Computing,2021,105:107256. [18]LI H,LI B,TAN S,et al.Identification of deep network generated images using disparities in color components[J].Signal Processing,2020,174:107616. [19]LI L,BAO J,ZHANG T,et al.Face X-Ray for More GeneralFace Forgery Detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2020:5000-5009. [20]HE P,LI H,WANG H.Detection of Fake Images Via The Ensemble of Deep Representations from Multi Color Spaces[C]//2019 IEEE International Conference on Image Processing (ICIP).2019:2299-2303. [21]ZHU X T,TANG Y Q,GENG P Z.Detection Algorithm ofTamper and Deepfake Images Based on Feature Fusion[J].Netinfo Security,2021.21(8):70-81. [22]YANG Y X,ZHOU X,XIONG S H,et al.Research on deepfakes detection combining traditional features and neural network[J].Information Technology and Network Security,2021,40(2):33-38. [23]ZHANG Y,JIN X,JIANG Q,et al.Deepfake image detectionmethod based on autoencoder[J].Journal of Computer Application,2021,41(10):2985-2990. [24]DURALL R,KEUPER M,PFREUNDT F,et al.UnmaskingDeepFakes with Simple Features[J].arXiv:1911.00686,2019. [25]PENG S F,CAI M C,MA R,et al.Deepfake detection algorithm for high-frequency components of shallow features[J/OL].Laser & Optoelectronics Progress.[2022-12-25].http://kns.cnki.net/kcms/detail/31.1690.TN.20220713.1942.593.html. [26]QIAN Y,YIN G,SHENG L,et al.Thinking in Frequency:Face Forgery Detection by Mining Frequency-aware Clues[C]//ECCV.2020. [27]WANG L N,NIE J S,WANG R,et al.Analyzing deepfake pro-venance and forensics[J].Journal of Tsinghua University (Science and Technology),2022(5):62. [28]YU N,DAVIS L,FRITZ M.Attributing Fake Images to GANs:Learning and Analyzing GAN Fingerprints[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).2019:7555-7565. [29]OLIVER G,LUCA G,SEBASTIANO B.Fighting Deepfakes by Detecting GAN DCT Anomalies[J].Journal of Imaging,2021,7(8):128. [30]HSU C,LEE C,ZHUANG Y.Learning to Detect Fake FaceImages in the Wild[C]//2018 International Symposium on Computer,Consumer and Control(IS3C).2018:388-391. [31]GUARNERA L,GIUDICE O,BATTIATO S.Fighting Deep-fake by Exposing the Convolutional Traces on Images[J].IEEE Access,2020,8:165085-165098. [32]WANG S,WANG O,ZHANG R,et al.CNN-Generated Images Are Surprisingly Easy to Spot& for Now[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:8692-8701. [33]HE Y,GAN B,CHEN S,et al.ForgeryNet:A Versatile Benchmark for Comprehensive Forgery Analysis[J].arXiv:2103.05630,2021. [34]YANG S,CHEN F.Analyzing Sentiments of Micro-blog Posts Based on Support Vector Machine[J].Data Analysis and Knowledge Discovery,2017,1(2):73-79. [35]ZHAO J X.Detect of Internet Fake Public Opinion Based on Decision Tree[J].Data Analysis and Knowledge Discovery,2015,259(6):78-84. [36]CHEN T,GUESTRIN C.XGBoost:A Scalable Tree Boosting System[C]//Proceedings of the 22nd ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining.2016. [37]ARIK S Ö,PFISTERT.TabNet:Attentive Interpretable Tabular Learning[J].arXiv:1908.07442,2021. [38]CAO S H,LIU X H,MAO X Q,et al.A review of human face forgery and forgery-detection technologies[J].Journal of Image and Graphics,2022,27(4):1023-1038. |
|