计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230200067-5.doi: 10.11896/jsjkx.230200067
刘畅, 朱焱
LIU Chang, ZHU Yan
摘要: 反讽作为一种层次丰富且复杂的语言表达方式,广泛存在于人们的日常表达和社交平台中。在电子商务、事件话题分析等方面,准确检测评论文本是否具有反讽意图对判断评论者情感倾向、对评论主体的好恶至关重要。研究针对会话上下文、用户上下文、主题上下文这3类反讽上下文语境,构建上下文语境丰富的反讽检测模型。针对传统浅层CNN难以捕获句子远距离依赖的问题,所提模型引入DPCNN架构捕获语句远程关联信息,并融合双向注意力机制学习会话上下文中的不协调信息。考虑到现实的数据样本中反讽类型数量少、反讽表达层次不均衡,还提出一种多学习模式的非对称损失函数,来解决样本类别不平衡、难易样本优先学习的问题。通过在3个公开反讽数据集上进行验证实验,结果表明所提模型在ACC、F1和AUC指标上均优于基准模型,最高超出2.5%。消融实验证明所提模型各个模块以及多学习模式损失函数均能提升反讽检测的性能。
中图分类号:
[1]KOLCHINSKI Y A,POTTS C.Representing social media users for sarcasm detection[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:1115-1121. [2]TAY Y,TUAN L A,HUI S C,et al.Reasoning with sarcasm by reading in-between[C]//Proceedings of the 56th Annual Mee-ting of the Association for Computational Linguistics.2018:1010-1020. [3]JOHNSON R,ZHANG T.Deep pyramid convolutional neuralnetworks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:562-570. [4]XIONG T,ZHANG P,ZHU H,et al.Sarcasm detection with self-matching networks and low-rank bilinear pooling[C]//The World Wide Web Conference.2019:2115-2124. [5]LI L A,MA H C,ZHOU Q L.Sarcasm detection based on transfer learning[J].Application Research of Computers,2021,38(12):3646-3650. [6]WEN Z,GUI L,WANG Q,et al.Sememe knowledge and auxi-liary information enhanced approach for sarcasm detection[J].Information Processing & Management,2022,59(3):102883. [7]KHODAK M,SAUNSHI N,VODRAHALLI K.A large self-annotated corpus for sarcasm[C]//Proceedings of the 8th International Conference on Language Resources and Evaluation.2018:641-646. [8]GHOSH D,VAJPAYEE A,MURESAN S.A report on the2020 sarcasm detection shared task[C]//Proceedings of the Second Workshop on Figurative Language Processing.2020:1-11. [9]HAZARIKA D,PORIA S,GORANTLA S,et al.Cascade:Contextual sarcasm detection in online discussion forums[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:1837-1848. [10]HAN H,ZHAO Q T,SUN T Y,et al.Contextual sarcasm detection model for social mediacomments[J].Computer Enginee-ring,2021,47(1):66-71. [11]ZHANG Y,MA D,TIWARI P,et al.Stance level sarcasm detection with BERT and stance-centered graph attention networks[J].ACM Transactions on Internet Technology,2023,23(2):1-21. [12]HUANG B,OU Y,CARLEY K M.Aspect level sentiment clas-sification with attention-over-attention neural networks[C]//International Conference on Social Computing,Behavioral-cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation.Cham;Springer,2018:197-206. [13]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [14]AKULA R,GARIBAY I.Interpretable multi-head self-attention architecture for sarcasm detection in social media[J].Entropy,2021,23(4):1-14. |
|