计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230200041-6.doi: 10.11896/jsjkx.230200041

• 人工智能 • 上一篇    下一篇

融合迭代式关系图匹配和属性语义嵌入的实体对齐方法

迟棠, 车超   

  1. 大连大学先进设计与智能计算省部重点实验室 大连 116622
  • 发布日期:2023-11-09
  • 通讯作者: 车超(chechao101@163.com)
  • 作者简介:(chitang0710@163.com)
  • 基金资助:
    国家自然科学基金(62076045,62102058);辽宁省教育厅服务地方项目(揭榜挂帅)(LJKFZ20220290);大连大学学科交叉项目(DLUXK-2023-YB-003,DLUXK-2023-YB-009)

Entity Alignment Method Combining Iterative Relationship Graph Matching and Attribute Semantic Embedding

CHI Tang, CHE Chao   

  1. Key Laboratory of Advanced Design and Intelligent Computing,Ministry of Education,Dalian University,Dalian 116622,China
  • Published:2023-11-09
  • About author:CHI Tang,born in 1997,postgraduate.Her main research interests include knowledge graph and so on.
    CHE Chao,born in 1981,Ph.D,professor.His main research interests include healthcare informatics,natural language processing and data mining.
  • Supported by:
    National Natural Science Foundation of China(62076045,62102058),Liaoning Provincial Department of Education Service Local Project (Unveiled)(LJKFZ20220290) and Interdisciplinary Project of Dalian University(DLUXK-2023-YB-003,DLUXK-2023-YB-009).

摘要: 实体对齐是知识融合中的关键步骤,用于解决多源知识图谱中实体冗余、指代不明等问题。目前,大多数的实体对齐方法主要依赖于邻域网络,而忽略了关系间的连通以及属性信息,导致模型无法捕捉到复杂关系,额外信息也没有被充分利用。针对上述问题,提出一种迭代式关系图匹配和属性语义嵌入的实体对齐方法,将〈头实体,关系,尾实体〉进行转置,生成〈头关系,实体,尾关系〉构建,与实体图相对应的关系图,接着利用注意力机制编码实体和关系表示,二者通过相互迭代,能够更好地表示实体,再融合属性表示最终判定两个实体是否对齐。实验结果表明,本模型在DBP15K 3个跨语言数据集中显著优于其他6种方法,相比于最好方法Hit@1指标提升了4%,证明了关系匹配和属性语义的有效性。

关键词: 知识图谱, 实体对齐, 图神经网络, 关系匹配, 属性语义

Abstract: Entity alignment is a key step in knowledge fusion,which is used to solve the problem of entity redundancy and unknown reference in multi-source knowledge graph.At present,most of the entity alignment methods mainly rely on the neighborhood network,but ignore the connectivity and attribute information between the relationships.As a result,the model cannot capture the complex relationships,and the additional information is not fully utilized.To solve the above problems,an entity alignment method based on iterative graph reasoning and attribute semantic embedding is proposed.The 〈head,relation,tail〉 is transposed to generate 〈head,relation,tail〉 to construct the corresponding relationship graph with the entity graph,and then the attention mechanism is used to encode the entity and relation representation.The two can represent the entity better through iteration.The refusion property indicates the final determination of whether the two entities are aligned.Experimental results show that this model is significantly superior to the other six methods in the three cross-language data sets of DBP15K,and the index increases by 4% compared with the best method Hit@1,which proves the effectiveness of relational reasoning and attribute semantics.

Key words: Knowledge graph, Entity alignment, Graph convolutional neural network, Relationship matching, Attribute semantic

中图分类号: 

  • TP391
[1]RIVERA-TRIGUEROS I.Machine translation systems andquality assessment:a systematic review[J].Language Resources and Evaluation,2022,56(2):593-619.
[2]KO H,LEE S,PARK Y,et al.A survey of recommendation systems:recommendation models,techniques,and application fields[J].Electronics,2022,11(1):141-188.
[3]XIAO J,YAO A,LIU Z,et al.Video as conditional graph hierarchy for multi-granular question answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:2804-2812.
[4]FORMICA A,TAGLINO F.Semantic relatedness in DBpedia:Acomparative and experimental assessment[J].Information Sciences,2023,621:474-505.
[5]LIU J,CHABOT Y,TRONCY R,et al.From tabular data toknowledge graphs:A survey of semantic table interpretation tasks and methods[J].Journal of Web Semantics,2022,76(3):1-28.
[6]NAVIGLI R,BEVILACQUA M,CONIA S,et al.Ten Years of BabelNet:A Survey[C]//Proceedings of the International Joint Conference on Artificial Intelligenc.Montreal,2021:4559-4567.
[7]LEONE M,HUBER S,ARORA A,et al.A critical re-evaluation of neural methods for entity alignment[J].Proceedings of the VLDB Endowment,2022,15(8):1712-1725.
[8]ZHU Y,LIU H,WU Z,et al.Relation-aware neighborhoodmatching model for entity alignment[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:4749-4756.
[9]ZHU J,HUANG C,DE MEO P.DFMKE:A dual fusion multi-modal knowledge graph embedding framework for entity alignment[J].Information Fusion,2023,90:111-119.
[10]ZENG K,DONG Z,HOU L,et al.Interactive ContrastiveLearning for Self-Supervised Entity Alignment[C]//Proceedings of the 31st ACM International Conference on Information &Knowledge Management.Atlanta,USA,2022:2465-2475.
[11]ZHU B,BAO T,HAN J,et al.Cross-lingual knowledge graph entity alignment by aggregating extensive structures and specific semantics[J].Journal of Ambient Intelligence and Humanized Computing,2023(14):12609-12616.
[12]XIN K,SUN Z,HUA W,et al.Large-scale Entity Alignment via Knowledge Graph Merging,Partitioning and Embedding[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management.Atlanta GA,USA,2022:2240-2249.
[13]NGOMO A-C N,AUER S.LIMES-a time-efficient approach for large-scale link discovery on the web of data[C]//Twenty-Second International Joint Conference on Artificial Intelligence.Barcelona,Catalonia,Spain,2011.
[14]JIMÉNEZ-RUIZ E,CUENCA GRAU B.Logmap:Logic-based and scalable ontology matching[C]//Proceedings of the 10th International Semantic Web Conference.Bonn,Germany,2011:273-288.
[15]SUN Z,HUANG J,HU W,et al.Transedge:Translating relation-contextualized embeddings for knowledge graphs[C]//Proceedings of the18th International Semantic Web Conference.Auckland,New Zealand,2019:612-629.
[16]YAN Z,PENG R,WANG Y,et al.CTEA:Context and topic enhanced entity alignment for knowledge graphs[J].Neurocomputing,2020,410:419-431.
[17]SUN Z,HU W,ZHANG Q,et al.Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.Macao,China,2019:5429-5435.
[18]GAO Y,LIU X,WU J,et al.ClusterEA:scalable entity alignment with stochastic training and normalized mini-batch similari-ties[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.Washington DC,USA,2022:421-431.
[19]WANG Z,YANG J,YE X.Knowledge graph alignment with entity-pair embedding[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:1672-1680.
[20]CHEN M,SHI W,ZHOU B,et al.Cross-lingual Entity Alignment with Incidental Supervision[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:Main Volume.2021:645-658.
[21]ZHANG Z,ZHANG Z,ZHOU Y,et al.Adversarial attack against cross-lingual knowledge graph alignment[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.Online and Punta Cana,Dominican Republic,2021:5320-5337.
[22]GUO L,HAN Y,ZHANG Q,et al.Deep reinforcement learning for entity alignment[C]//Proceedings of the60th Annual Meeting of the Association for Computational Linguistics.Dublin,2022:2754-2765.
[23]YANG H W,ZOU Y,SHI P,et al.Aligning Cross-Lingual Entities with Multi-Aspect Information[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).Hong Kong,China,2019:4431-4441.
[24]WU Y,LIU X,FENG Y,et al.Jointly Learning Entity and Relation Representations for Entity Alignment[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).Hong Kong,China,2019:240-249.
[25]WANG Z,LV Q,LAN X,et al.Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels,Belgium,2018:349-357.
[26]WU Y,LIU X,FENG Y,et al.Neighborhood Matching Net-work for Entity Alignment[C]//Proceedings of the 58th AnnualMeeting of the Association for Computational Linguistics.2020:6477-6487.
[27]GAO J,LIU X,CHEN Y,et al.MHGCN:Multiview highway graph convolutional network for cross-lingual entity alignment[J].Tsinghua Science and Technology,2021,27(4):719-728.
[28]MAO X,WANG W,WU Y,et al.Boosting the speed of entity alignment 10×:Dual attention matching network with norma-lized hard sample mining[C]//Proceedings of the Web Confe-rence 2021.Ljubljana,Slovenia,2021:821-832.
[29]WU J,LI B,QIN Y,et al.A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images[J].International Journal of Applied Earth Observation and Geoinformation,2021,105(1):102615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!