计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 221000045-5.doi: 10.11896/jsjkx.221000045

• 人工智能 • 上一篇    下一篇

一种约束验证神经网络的方法

郜玉钊, 邢云汉, 刘嘉祥   

  1. 深圳大学计算机与软件学院 广东 深圳 518060
  • 发布日期:2023-11-09
  • 通讯作者: 刘嘉祥(jiaxiang0924@gmail.com)
  • 作者简介:(1079330450@qq.com)
  • 基金资助:
    广东省自然科学基金(2022A1515011458,2022A1515010880);国家自然科学基金(61836005);深圳市科创委基础研究项目(JCYJ20210324094202008)

Constraint-based Verification Method for Neural Networks

GAO Yuzhao, XING Yunhan, LIU Jiaxiang   

  1. College of Computer Science and Software Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
  • Published:2023-11-09
  • About author:GAO Yuzhao,born in 1996,postgra-duate.His main research interests include formal verification and neural network.
    LIU Jiaxiang,born in 1987,Ph.D,assistant professor,is a member of China Computer Federation.His main research interests include formal verification and rewriting theory.
  • Supported by:
    Natural Science Foundation of Guangdong Province,China(2022A1515011458,2022A1515010880),National Natural Science Foundation of China(61836005) and Shenzhen Science and Technology Innovation Commission(JCYJ20210324094202008).

摘要: 神经网络的验证一直是人工智能领域的主要挑战之一。文中基于DeepZ方法,提出一种通过约束提升深度神经网络的局部鲁棒性验证精度的方法。在传播过程中加入约束来缩小抽象域,通过线性规划求解一个更小的神经网络输出范围,以此推断出神经网络输出节点的新的边界。应用新的边界,可以得出更精确的验证结果。基于此方法,实现了DeepZero工具,并在 MNIST数据集上进行了充分的实验。实验结果表明,所提方法能有效提升DeepZ方法的验证成功率。在实验中,验证成功率平均可提升49%,说明了所提方法的有效性。

关键词: 神经网络, 软件验证, 人工智能, 机器学习, 软件安全

Abstract: The verification of neural networks has always been one of the major challenges in the field of artificial intelligence.Based on the DeepZ method,this paper proposes a method to improve the accuracy of verifying local robustness of deep neural networks by constraints.During the propagation process,constraints are added to reduce the abstract domain,then a tighter neural network output range is solved by linear programming,hence deducing new bounds of neural network output node.With the new bounds,more accurate verification results can be obtained.Based on this method,the DeepZero tool is implemented in this paper,and comprehensive evaluation is carried out on the MNIST dataset.Experimental results show that our method effectively improves the verification success rate of DeepZ.Specifically,the verification success rate of DeepZ increases by 49% in average,indicating the effectiveness of the proposed method.

Key words: Neural network, Software verification, Artificial intelligence, Machine learning, Software security

中图分类号: 

  • TP311
[1]HINTON G,DENG L,YU D,et al.Deep neural networks foracoustic modeling in speech recognition:The shared views of four research groups[J].IEEE Signal Processing Magazine,2012,29(6):82-97.
[2]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[3]LUBOSCH M,KUNATH M,WINKLER H.Industrial sche-duling with Monte Carlo tree search and machine learning[C]//Procedia CIRP.2018:1283-1287.
[4]HUANG X,KROENING D,RUAN W,et al.A survey of safetyand trustworthiness of deep neural networks:Verification,testing,adversarial attack and defence,and interpretability[J].Computer Science Review,2020,37:100270.
[5]ZHANG M H,DU D H,ZHANG M Z,et al.Spatio-temporaltrajectory data-driven autonomous driving scenario meta-mode-ling approach[J].Ruan Jian Xue Bao/Journal of Software,2021,32(4):973-987.
[6]KALRA N,PADDOCK S M.Driving to safety:How many miles of driving would it take to demonstrate autonomous vehicle reliab-ility?[J].Transportation Research Part A:Policy and Practice,2016,94:182-193.
[7]WANG Z,YAN M,LIU S,et al.Survey on testing of deep neural networks[J].Ruan Jian Xue Bao/Journal of Software,2020,31(5):1255-1275.
[8]WANG J,ZHAN N J,FENG X Y,et al.Overview of formalmethods[J].Ruan Jian Xue Bao/Journal of Software,2019,30(1):33-61.
[9]LIU C,ARNON T,LAZARUS C,et al.Algorithms for verifying deep neural networks[J].Foundations and Trends© in Optimization,2021,4(3/4):244-404.
[10]PULINA L,TACCHELLA A.An abstraction-refinement ap-proach to verification of artificial neural networks[C]//International Conference on Computer Aided Verification.Berlin:Springer,2010:243-257.
[11]XIANG W,TRAN H D,JOHNSON T T.Reachable set computation and safety verification for neural networks with relu activations[J].arXiv:1712.08163,2017.
[12]XIANG W,TRAN H D,JOHNSON T T.Output reachable set estimation and verification for multilayer neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(11):5777-5783.
[13]SINGH G,GEHR T,MIRMAN M,et al.Fast and effective robustness certification[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems(NIPS’18).2018:10825-10836.
[14]SINGH G,GEHR T,PÜSCHEL M,et al.An abstract domain for certifying neural networks [C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems(NIPS ’18).2018:10825-10836.
[15]DVIJOTHAM K,STANFORTH R,GOWAL S,et al.A Dual Approach to Scalable Verification of Deep Networks[C]//UAI.2018:3.
[16]RAGHUNATHAN A,STEINHARDT J,LIANG P.Certified defenses against adversarial examples[J].arXiv:1801.09344,2018.
[17]ASHOK P,HASHEMI V,KŘETÍNSKÝ J,et al.Deepab-stract:Neural network abstraction for accelerating verification[C]//International Symposium on Automated Technology for Verification and Analysis.Cham:Springer,2020:92-107.
[18]GEHR T,MIRMAN M,DRACHSLER-COHEN D,et al.Ai2:Safety and robustness certification of neural networks with abstract interpretation[C]//2018 IEEE Symposium on Security and Privacy(SP).IEEE,2018:3-18.
[19]TRAN H D,MANZANAS LOPEZ D,MUSAU P,et al.Star-based reachability analysis of deep neural networks[C]//International Symposium on Formal Methods.Cham:Springer,2019:670-686.
[20]ZHANG H,WENG T W,CHEN P Y,et al.Efficient neural network robustness certification with general activation functions[J/OL].Advances in Neural Information Processing Systems,2018,31.https://dl.acm.org/doi/abs/10.5555/3327345.3327402.
[21]XU K,ZHANG H,WANG S,et al.Fast and complete:Enabling complete neural network verification with rapid and massively parallel incomplete verifiers[J].arXiv:2011.13824,2020.
[22]WANG S,ZHANG H,XU K,et al.Beta-crown:Efficient bound propagation with per-neuron split constraints for neural network robustness verification[J].Advances in Neural Information Processing Systems,2021,34:29909-29921.
[23]DE PALMA A,BUNEL R,DESMAISON A,et al.Improvedbranch and bound for neural network verification via lagrangian decomposition[J].arXiv:2104.06718,2021.
[24]BUNEL R,MUDIGONDA P,TURKASLAN I,et al.Branchand bound for piecewise linear neural network verification[J/OL].Journal of Machine Learning Research,2020,21(2020).https://dl.acm.org/doi/10.5555/3455716.3455758.
[25]LI J,LIU J,YANG P,et al.Analyzing deep neural networks with symbolic propagation:Towards higher precision and faster verification[C]//International Static Analysis Symposium.Cham:Springer,2019:296-319.
[26]LIN W,YANG Z,CHEN X,et al.Robustness verification ofclassification deep neural networks via linear programming[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:11418-11427.
[27]YANG P,LI R,LI J,et al.Improving neural network verification through spurious region guided refinement[C]//International Conference on Tools and Algorithms for the Construction and Analysis of Systems.Cham:Springer,2021:389-408.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!