计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 221000243-5.doi: 10.11896/jsjkx.221000243
李仁杰, 闫巧
LI Renjie, YAN Qiao
摘要: 聚类联邦学习常用于解决联邦学习中数据异质性导致准确率下降的问题,通过聚类算法将数据分布相似的客户端划分到相同簇中,簇模型用于解决某个特定分布问题。当前聚类联邦学习中为了获得好的实验结果,研究者通常将相同的分布训练集和测试集分配到同一个簇中,然而现实中无法达到实验理想效果,本地客户端中使用模型的数据集与训练模型的数据集分布可能不同,当分布不同时聚类联邦学习的簇模型准确率会大幅下降,影响本地端设备的簇间准确率。文中提出两种方案提升聚类联邦学习中簇模型的簇间准确率。第一种方案是自适应聚类联邦学习(AWCFL),在簇内聚合时加入其他簇的模型,使得簇模型学习到其他分布的知识,有效提升簇模型的簇间准确率;第二种方案是多分布聚类联邦学习(MCFL),将簇模型同步到每个客户端,让客户端选择合适的模型使用,该方案相对于第一种方案簇内准确率不会下降,簇间准确率提升明显。上述两种方案在Mnist和EMnist数据集上进行实验,与IFCA,CFL(Clustered Federated Learning)和FedAvg进行比较,簇间准确率明显提升。
中图分类号:
[1]MCMAHAN B,MOORE E,RAMAGED,et al.Communication-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [2]HARD A,RAO K,MATHEWS R,et al.Federated learning for mobile keyboard prediction[J].arXiv:1811.03604,2018. [3]BRISIMI T S,CHEN R,MELA T,et al.Federated learning of predictive models from federated electronic health records[J].International Journal of Medical Informatics,2018,112:59-67. [4]SIM K C,ZADRAZIL P,BEAUFAYS F.An investigation intoon-device personalization of end-to-end automatic speech recognition models[J].arXiv:1909.06678,2019. [5]MANSOUR Y,MOHRI M,RO J,et al.Three approaches forpersonalization with applications to federated learning[J].ar-Xiv:2002.10619,2020. [6]MARFOQ O,NEGLIA G,BELLET A,et al.Federated multi-task learning under a mixture of distributions[J].Advances in Neural Information Processing Systems,2021,34:15434-15447. [7]SMITH V,CHIANG C K,SANJABI M,et al.Federated multi-task learning[J].arXiv:1705.10467,2018. [8]LI T,SAHU A K,TALWALKARA,et al.Federated learning:Challenges,methods,and future directions[J].IEEE Signal Processing Magazine,2020,37(3):50-60. [9]GHOSH A,CHUNG J,YIN D,et al.An efficient framework for clustered federated learning[J].Advances in Neural Information Processing Systems,2020,33:19586-19597. [10]DUAN M,LIU D,CHEN X,et al.Self-balancing federated learning with global imbalanced data in mobile systems[J].IEEE Transactions on Parallel and Distributed Systems,2020,32(1):59-71. [11]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [12]RADOVANOVIĆ M,NANOPOULOS A,IVANOVIĆ M.Onthe existence of obstinate results in vector space models[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2010:186-193. [13]SATTLER F,MÜLLER K R,SAMEK W.Clustered federated learning:Model-agnostic distributed multitask optimization under privacy constraints[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(8):3710-3722. [14]SATTLER F,MÜLLER K R,WIEGAND T,et al.On the byzantine robustness of clustered federated learning[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2020).IEEE,2020:8861-8865. [15]WANG L,XU S,WANG X,et al.Addressing class imbalance in federated learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:10165-10173. [16]SARKAR S,GHOSH A K.On perfect clustering of high dimension,low sample size data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,42(9):2257-2272. [17]BRIGGS C,FAN Z,ANDRAS P.Federated learning with hierarchical clustering of local updates to improve training on non-IID data[C]//2020 International Joint Conference on Neural Networks(IJCNN).IEEE,2020:1-9. |
|