计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 230200188-9.doi: 10.11896/jsjkx.230200188
• 信息安全 • 上一篇
张连福1,2, 谭作文1
ZHANG Lianfu1,2, TAN Zuowen1
摘要: 联邦学习(Federated Learning,FL)允许多个数据所有者联合训练机器学习模型,而无需他们共享私有训练数据。然而,研究表明,FL容易同时遭受拜占庭攻击和隐私泄露威胁,现有的研究都没有很好地解决这一问题。在联邦学习场景中,保护FL免受拜占庭攻击,同时考虑性能、效率、隐私、攻击者数量、简单可行等问题,是一个极具挑战性的问题。为解决这一问题,基于l2范数和两次归一化方法提出了一种隐私保护鲁棒联邦学习算法DP-FedAWA。提出的算法不需要训练过程之外的任何假设,并且可以自适应地处理少量和大量的攻击者。无防御设置下选用DP-FedAvg作为比较基线,防御设置下选用Krum和Median作为比较基线。MedMNIST2D数据集上的广泛实验证实了,DP-FedAWA算法是安全的,对恶意客户端具有很好的鲁棒性,在Accuracy,Precision,Recall和F1 -Score等性能指标上全面优于现有的Krum和Median算法。
中图分类号:
[1]MCKINNEY S M,SIENIEK M,GODBOLE V,et al.International evaluation of an AI system for breast cancer screening[J].Nature,2020,577(7788):89-94. [2]LEE J,SUN J,WANG F,et al.Privacy-preserving patient similarity learning in a federated environment:development and analysis[J].JMIR Nedical Informatics,2018,6(2):e7744. [3]ELSHAFEEY N,KOTROTSOU A,HASSAN A,et al.Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma[J].Nature Communications,2019,10(1):3170. [4]KAISSIS G,ZIEGELMAYER S,LOHÖFER F,et al.A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging[J].European Radiology Experimental,2019,3(1):1-9. [5]LU H,ARSHAD M,THORNTON A,et al.A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic-and molecular-phenotypes of epithelial ovarian cancer[J].Nature Communications,2019,10(1):764. [6]FREDRIKSON M,JHA S,RISTENPART T.Model inversionattacks that exploit confidence information and basic counte-rmeasures[C]//Proceedings of the 22nd ACM SIGSAC Confe-rence on Computer and Communications Security.2015:1322-1333. [7]BLANCHARD P,EL MHAMDI E M,GUERRAOUI R,et al.Machine learning with adversaries:Byzantine tolerant gradient descent[J].Advances in Neural Information Processing Systems,2017,30. [8]ABADI M,CHU A,GOODFELLOW I,et al.Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.2016:308-318. [9]DWORK C.Differential privacy[C]//Proceedings of the Automata,Languages and Programming:33rd International Colloquium(ICALP 2006).Venice,Italy,2006:1-12. [10]GEYER R C,KLEIN T,NABI M.Differentially private federated learning:A client level perspective[J].arXiv:171207557,2017. [11]SATHYA S S,VEPAKOMMA P,RASKAR R,et al.A review of homomorphic encryption libraries for secure computation[J].arXiv:181202428,2018. [12]XU G,LI H,ZHANG Y,et al.Privacy-preserving federateddeep learning with irregular users[J].IEEE Transactions on Dependable and Secure Computing,2020,19(2):1364-1381. [13]KELLER M,PASTRO V,ROTARU D.Overdrive:making SPDZ great again[C]//37th Annual International Conference on the Theory and Applications of Cryptographic Techniques(EUROCRYPT 2018).Tel Aviv,Israel,2018:158-189. [14]BOYLE E,GILBOA N,ISHAI Y.Function secret sharing:Improvements and extensions[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.2016:1292-1303. [15]MOHASSEL P,ZHANG Y.Secureml:A system for scalableprivacy-preserving machine learning[C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy(SP).IEEE,2017:19-38. [16]TANG L T,WANG D,ZHANG L F,et al.Federated learning scheme based on secure multi-party computation and differential privacy[J].Computer Science,2022,49(9):297-305. [17]LI S,CHENG Y,LIU Y,et al.Abnormal client behavior detection in federated learning[J].arXiv:191009933,2019. [18]XIE C,KOYEJO S,GUPTA I.Zeno:Distributed stochastic gradient descent with suspicion-based fault-tolerance[C]//Procee-dings of the International Conference on Machine Learning.PMLR,2019:6893-6901. [19]CAO X,LAI L.Distributed gradient descent algorithm robust to an arbitrary number of byzantine attackers[J].IEEE Transactions on Signal Processing,2019,67(22):5850-5864. [20]CAO X,FANG M,LIU J,et al.Fltrust:Byzantine-robust federated learning via trust bootstrapping[J].arXiv:201213995,2022. [21]BLANCHARD P,MHAMDI E,GUERRAOUI R,et al.Ma-chine learning with adversaries:byzantine tolerant gradient descent[C]//Proceedings of the Neural Information Processing Systems.2017. [22]XIA Q,TAO Z,HAO Z,et al.FABA:an algorithm for fast aggregation against byzantine attacks in distributed neural networks[C]//Proceedings of the IJCAI.2019. [23]YIN D,CHEN Y,KANNAN R,et al.Byzantine-robust distributed learning:Towards optimal statistical rates[C]//Proceedings of the International Conference on Machine Learning.PMLR,2018:5650-5659. [24]GUERRAOUI R,ROUAULT S.The hidden vulnerability ofdistributed learning in byzantium[C]//Proceedings.of the International Conference on Machine Learning.PMLR,2018:3521-3530. [25]CHEN Y,SU L,XU J.Distributed statistical machine learning in adversarial settings:Byzantine gradient descent[C]//Proceedings of the ACM on Measurement and Analysis of Computing Systems.2017:1-25. [26]PILLUTLA K,KAKADE S M,HARCHAOUI Z.Robust aggregation for federated learning[J].IEEE Transactions on Signal Processing,2022,70:1142-1154. [27]YAN M,LIN Y,NIE Z S,et al.Training Method to Improve Robustness of Federated Learning[J].Computer Science,2022,49(S1):496-501. [28]HONGYAN C,VIRAT S,REZA S,et al.Cronus:Robust and heterogeneous collaborative learning with black-box knowledge transfer[J].arXiv:191211279,2019. [29]MIAO Y,LIU Z,LI H,et al.Privacy-preserving Byzantine-robust federated learning via blockchain systems[J].IEEE Transactions on Information Forensics and Security,2022,17:2848-2861. [30]TANG X,SHEN M,LI Q,et al.PILE:Robust Privacy-Preserving Federated Learning via Verifiable Perturbations[J].IEEE Transactions on Dependable and Secure Computing,2023:1-18. [31]TAN Z,ZHANG L.Survey on privacy preserving techniques for machine learning[J].J Softw,2020,31(7):2127-2156. [32]DWORK C,ROTH A.The algorithmic foundations of differential privacy[J].Foundations and Trends© in Theoretical Computer Science,2014,9(3):211-407. [33]MCMAHAN H B,RAMAGE D,TALWAR K,et al.Learningdifferentially private recurrent language models[J].arXiv:171006963,2017. [34]HITAJ B,ATENIESE G,PEREZ-CRUZ F.Deep models under the GAN:information leakage from collaborative deep learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.2017:603-618. [35]SHOKRI R,STRONATI M,SONG C,et al.Membership infe-rence attacks against machine learning models[C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy(SP).IEEE,2017:3-18. [36]YANG J,SHI R,WEI D,et al.Medmnist v2:A large-scale lightweight benchmark for 2d and 3d biomedical image classification[J].arXiv:211014795,2021. |
|