计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 221100039-7.doi: 10.11896/jsjkx.221100039

• 大数据&数据科学 • 上一篇    下一篇

基于博弈动态影响图的股市趋势推理算法

姚宏亮, 尹致远, 杨静, 俞奎   

  1. 合肥工业大学计算机与信息学院 合肥 230601
  • 发布日期:2023-11-09
  • 通讯作者: 姚宏亮(dmicyhl@163.com)
  • 基金资助:
    国家重点研发计划 (2020AAA0106100);国家自然科学基金面上项目(61876206,62176082)

Stock Market Trend Reasoning Algorithm Based on Game Dynamic Influence Diagram

YAO Hongliang, YIN Zhiyuan, YANG Jing, YU Kui   

  1. School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China
  • Published:2023-11-09
  • About author:YAO Hongliang,born in 1970,Ph.D,associate professor.His main research interests include machine learning and data mining.
  • Supported by:
    National Key R & D Program of China(2020AAA0106100) and National Natural Science Foundation of China(61876206,62176082).

摘要: 股票市场是一个复杂非线性动态系统,具有高度不确定性和多变性,股市趋势预测是数据挖掘领域的一个研究热点。针对基于数据驱动方法所生成的模型鲁棒性差,训练良好的模型不适应实际需要的问题,提出了一种多Agent博弈动态影响图模型( Mulit-Agent Game Dynamic Influence Diagrams,MAGDIDs)。首先,从博弈的角度引入多方和空方作为股市的行为主体(Agent),提取行为主体的相关特征;然后,利用能量表示博弈主体的力量大小,并对行为主体特征进行量化融合;进而引入博弈策略,构建多Agent博弈动态影响图模型,对于股市行为主体的博弈过程进行建模;最后,利用联合树的自动推理技术,预测股市趋势。在实际数据上进行实验,实验结果表明多空博弈趋势预测算法具有良好性能。

关键词: 博弈, 多Agent, 鲁棒性, 联合树, 动态影响图

Abstract: The stock market is a complex nonlinear dynamic system with high uncertainty and variability.Stock market trend prediction is a research hotspot in the field of data mining.Aiming at the problem that the model based on the data-driven method has poor robustness and the well-trained model does not meet the actual needs,Multi-agent game dynamic influence diagrams(MAGDIDs) is proposed.First of all,from the perspective of the game,the long side and the short side are introduced as the behavior subjects(Agent) of the stock market,and the relevant characteristics of the behavioral subjects are extracted.Next,the power of the game subjects is represented by energy,and the characteristics of the behavioral subjects are quantified and integra-ted.Then,the game strategy is introduced to build a multi-agent game dynamic influence graph model,and model the game process of the stock market actors.Finally,the automatic reasoning technology of the junction tree is used to predict the stock market trend.Experiments are carried out on actual data,and the results show that the trend prediction algorithm of long-short game has good performance.

Key words: Game, Multi-agent, Robustness, Junction tree, Dynamic influence graph

中图分类号: 

  • TP181
[1]ZHANG D H,LOU S.The application research of neural network and BP algorithm in stock price pattern classification and prediction[J].Future Generation Computer Systems,2021,115:872-879.
[2]DE OLIVERIRA F A,NOBRE C N,ZARATE L E.ApplyingArtificial Neural Networks to prediction of stock price and improvement of the directional prediction index-Case study of PETR4,Petrobras,Brazil[J].Expert Systems with Applications,2013,40(18):7596-7606.
[3]ZHAO Z Y,RAO R N,TU S X,et al.Time-weighted LSTM model with redefined labeling for stock trend prediction[C]//2017 IEEE 29th International Conference on Tools with Artificial Intelligence(ICTAI).IEEE,2017:1210-1217.
[4]SELVIN S,VINAYAKAKUMAR R,GOPALAKRISHNAN EA,et al.Stock priceprediction using LSTM,RNN and CNN-sli-ding window model[C]//2017 International Conference on Advances in Computing,Communications and Informatics(ICACCI).IEEE,2017:1643-1647.
[5]OJO S O,OWOLAWI P,MPHAHLELE M,et al.Stock Market Behaviour Prediction using Stacked LSTM Networks[C]//2019 International Multidisciplinary Information Technology and Engineering Conference(IMITEC).IEEE,2020:1-5.
[6]HOOI B,LIU S,SMAILAGIC A,et al.BEATLEX:Summari-zing and Forecasting Time Series with Patterns[C]//Joint European Conference on Machine Learning and Knowledge Disco-very in Databases.Cham:Springer,2017:3-19.
[7]QIN X Y,PENG Q K.Stock turning point recognition usingmultiplemodel algorithm with multiple types of features[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation.IEEE,2012:4020-4025.
[8]CHANDRIKKA P V,VISALAKKSHMI K,SRINIVASAN KS.Application of Hidden Markov Models in Stock Trading[C]//2020 6th International Conference on Advanced Computing and Communication Systems(ICACCS).IEEE,2020:1144-1147.
[9]CHENG S H.A Hybrid Predicting Stock Return Model Basedon Bayesian Network and Decision Tree[C]//2014 6th International Conference on Industrial.Springer International Publi-shing,2014:218-227.
[10]LIU Z X,DANG Z Y,YU J.Stock Price Prediction Model Based on RBF-SVM Algorithm[C]//2020 International Conference on Computer Engineering and Intelligent Control(ICCEIC).IEEE,2020:124-127.
[11]HERNANDEZ-LEAL P,KAISERS M,BAARSLAG T,et al.A Survey of Learning in Multiagent Environments:Dealing with Non-Stationarity[J].arXiv:1707.09183,2017.
[12]SILVER D,HUANG A,MADDISON C J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489.
[13]MORAVCIK M,SCHMID M,BURCH N,et al.DeepStack:Expert-level artificial intelligence in heads-up no-limit poker[J].Science,2017,356(6337):508-513.
[14]HOWARD R A,MATHESON J E.Influence Diagrams[J].Principles & Applications of Decision Analysis,2005,2(3):127-143.
[15]KOLLER D,MILCH B.Multi-agent influence diagrams for representing and solving games[J].Games and Economic Beha-vior,2003,45(1):181-221.
[16]DOSHI P,ZENG Y,CHEN Q.Graphical models for interactive POMDPs:representation and solutions[J].Autonomous Agents and Multi-Agent Systems,2009,18(3):376-416.
[17]YAO H L,WANG H,ZHANG Y S,et al.Research on multi-agent dynamic influence diagrams and its approximate inference algorithm[J].Chinese Journal of Computers,2008,31(2):236-244.
[18]COOPER G F.A Method for Using Belief Networks as In-fluence Diagrams[C]//4th Workshop on Uncertainty in Artificial Intelligence.2013:55-63.
[19]ZHOU L,YIN Q Y,HUANG K Q.Game-Theoretic Learning in Human-Computer Gaming[J].Chinese Journal of Computers,2022,45(9):1859-1876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!