计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 362-368.doi: 10.11896/jsjkx.220800090
赵子天, 詹文翰, 段翰聪, 吴跃
ZHAO Zitian, ZHAN Wenhan, DUAN Hancong, WU Yue
摘要: 对抗攻击的出现对于深度神经网络(DNN)在现实场景中的大规模部署产生了巨大的威胁,尤其是在与安全相关的领域。目前已有的大多数防御方法都基于启发式假设,缺少对模型对抗鲁棒性的分析。如何提升DNN的对抗鲁棒性,并提升鲁棒性的可解释性和可信度,成为人工智能安全领域的重要一环。文中提出从奇异值分布的角度分析模型的对抗鲁棒性。研究发现,模型在对抗性环境下鲁棒性的提升伴随着更加平滑的奇异值分布。通过进一步分析表明,平滑的奇异值分布意味着模型的分类置信度来源更加多样,从而也具有更高的对抗鲁棒性。基于此分析,进一步提出了基于奇异值抑制SVS(Singular Value Suppress)的对抗训练方法。实验结果表明,该方法进一步提高了模型在对抗性环境下的鲁棒性,在面对强力白盒攻击方法PGD(Project Gradient Descent)时,在CIFAR10和SVHN数据集上分别能达到55.3%和54.51%的精度,超过了目前最具有代表性的对抗训练方法。
中图分类号:
[1]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining andHarnessing Adversarial Examples[C]//Proceedings of the International Conference on Learning Representations.OpenReview.net,2015:1-11. [2]CHEN M X,ZHANG J Y,JI S L,et al.Survey of Research Progress on Adversarial Examples in Images[J].Computer Science,2022,49(2):92-106. [3]WANG C,WEI X L,TIAN Q,et al.Feature Gradient-based Ad-versarial Attack on Modulation Recognition-oriented Deep Neural Networks[J].Computer Science,2021,48(7):25-32. [4]CHERNIKOVA A,OPREA A.FENCE:Feasible Evasion At-tacks on Neural Networks in Constrained Environments[J].ACM Transactions on Privacy and Security,2022,25(4):1-34. [5]CHEN J Y,ZHANG D J,HUANG G H,et al.Adversarial Attack and Defense on Graph Neural Networks:A Survey[J].Chinese Journal of Network and Information Security,2021(3):1-28. [6]LIU X L,LUO Y H,SHAO L,et al.Survey of Generation,Attack and Defense of Adversarial Examples[J].Application Research of Computer,2020,37(11):3201-3205,3212. [7]WANG Z,SONG M,ZHENG S,et al.Invisible Adversarial Attack against Deep Neural Networks:An Adaptive Penalization Approach[J].IEEE Transactions on Dependable and Secure Computing,2021,18(3):1474-1488. [8]WANG Q,ZHENG B,LI Q,et al.Towards Query-Efficient Ad-versarial Attacks Against Automatic Speech Recognition Systems[J].IEEE Transaction on Information Forensics and Secu-rity,2021,16:896-908. [9]WEI X,GUO Y,LI B.Black-box Adversarial Attacks by Mani-pulating Image Attributes[J].Information Sciences,2021,550:285-296. [10]LIU Y,MA S,AAFER Y,et al.Trojaning Attack on Neural Networks[C]//Proceedings of the Network and Distributed System Security Symposium.Reston:Internet Society,2018:1-15. [11]ZHONG Y,DENG W.Towards Transferable Adversarial At-tack Against Deep Face Recognition[J].IEEE Transaction on Information Forensics and Security,2021,16:1452-1466. [12]JING H Y,ZHOU C,HE X.Security Evaluation Method for Risk of Adversarial Attack on Face Detection[J].Computer Science,2021,7(48):17-24. [13]HAO Z Y,CHEN L,HUANG J C.Class Discriminative Universal Adversarial Attack for Text Classification[J].Computer Science,2022,49(8):323-329. [14]WANG D N,CHEN W,YANG Y,et al.Defense Method of Adversarial Training based on Gaussian Enhancement and Iterative Attack[J].Computer Science,2021,48(6A):509-513,537. [15]YAN H,ZHANG J,NIU G,et al.CIFS:Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection[C]//Proceedings of the International Conference on Machine Learning.New York:PMLR,2021:1-11. [16]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards Deep Learning Models Resistant to Adversarial Attacks[C]//Proceedings of the International Conference on Learning Representations.OpenReview.net,2018:1-28. [17]WANG D,LI C,WEN S,et al.Defending Against Adversarial Attack towards Deep Neural Networks via Collaborative Multi-Task Training[J].IEEE Transactions on Dependable and Secure Computing,2022,19(2):953-965. [18]CRECCHI F,MELIS M,SOTGIU A,et al.FADER:Fast Adversarial Example Rejection[J].Neurocomputing,2022,470:257-268. [19]XU W,EVANS D,QI Y.Feature Squeezing:Detecting Adversarial Examples in Deep Neural Networks[C]//Proceedings of the Network and Distributed System Security Symposium.Reston:Internet Society.2018:1-15. [20]WANG Y,SONG X,XU T,et al.From RGB to Depth:Domain Transfer Network for Face Anti-Spoofing[J].IEEE Transaction on Information Forensics and Security,2021,16:4280-4290. [21]JIN K,ZHANG T,SHEN C,et al.Can We Mitigate Backdoor Attack Using Adversarial Detection Methods?[J].IEEE Transactions on Dependable and Secure Computing,2022,Early Access:1-15. [22]WEI Z C,FENG H,ZHANG X Q et al.Research on Physical Adversarial Sample Detection Method based on Attention Mecha-nism[J].Application Research of Computer,2022,39(1):254-258. [23]LI T,LIU A,LIU X,et al.Understanding Adversarial Robus-tness via Critical Attacking Route[J].Information Sciences,2021,547:568-578. [24]WANG H,WANG Z,DU M,et al.Score-CAM:Score-weighted Visual Explanations for Convolutional Neural Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.New York:IEEE Press,2020:111-119. [25]ZHANG C,LIU A,LIU X,et al.Interpreting and ImprovingAdversarial Robustness of Deep Neural Networks with Neuron Sensitivity[J].IEEE Transactions on Image Processing,2021,30:1291-1304. [26]GAVRIKOV P,KEUPER J.Adversarial Robustness throughthe Lens of Convolutional Filters[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.New York:IEEE Press,2022:1-9. [27]ZHU C,CHENG Y,GAN Z,et al.FreeLB:Enhanced Adversa-rial Training for Natural Language Understanding[C]//Proceedings of the International Conference on Learning Representations.OpenReview.net,2020:1-12. [28]ZHANG D,ZHANG T,LU Y,et al.You Only Propagate Once:Accelerating Adversarial Training via Maximal Principle[C]//Advances in Neural Information Processing Systems.New York:Curran Associates,Inc.,2019:1-12. [29]KANNAN H,KURAKIN A,GOODFELLOW I.AdversarialLogit Pairing[J].arXiv:1803.06373,2018. [30]MA S,LIU Y,TAO G,et al.NIC:Detecting Adversarial Samples with Neural Network Invariant Checking[C]//Proceedings of the Network and Distributed System Security Symposium.Reston:Internet Society,2019:1-15. [31]LIAO F,LIANG M,DONG Y,et al.Defense Against Adversa-rial Attacks Using High-Level Representation Guided Denoiser[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2018:1778-1787. [32]SHAHAM U,YAMADA Y,NEGAHBAN S.UnderstandingAdversarial Training:Increasing Local Stability of Supervised Models through Robust Optimization[J].Neurocomputing,2018,307:195-204. [33]DING G W,WANG L,JIN X.{AdverTorch} v0.1:An Adver-sarial Robustness Toolbox based on PyTorch[J].arXiv:1902.07623,2022. [34]SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing Properties of Neural Networks [C]//International Conference on Learning Representations.OpenReview.net,2014:1-10. [35]CARLINI N,WAGNER D.Towards Evaluating the Robustness of Neural Networks[C]//Proceedings of the IEEE Symposium on Security and Privacy.New York:IEEE Press,2016:39-57. |
|