计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 221100144-8.doi: 10.11896/jsjkx.221100144
王昊, 周建涛, 郝昕毓, 王飞宇
WANG Hao, ZHOU Jiantao, HAO Xinyu, WANG Feiyu
摘要: 科技领域的衍生行业因普遍存在强时间约束的特性而累积了海量的高维时间序列数据,严峻的数据压力导致传统的数据建模预测方法受制于数据规模和属性维度。支撑高质量的服务对大数据智能预测技术提出了更高的要求,如何在数据层面上实现预测性能的提升是现阶段亟待解决的主要问题。针对上述问题,提出了针对多元时序数据的特征再抽象(Feature Re-Abstraction,FRA)算法,首先通过RobustSTL分解算法提取趋势性和季节性特征(Trend and Seasonality Features,TSFs),实现多元数据的特征二阶抽象,以“抽象即特征”替代传统“标签即特征”的提取策略,再通过Pearson相关系数的运算结果评估再抽象技术捕捉的TSFs与目标参数间的相关强度,证实TSF的数据价值。在FRA算法的基础上结合深度学习模型构建基于数据驱动的多元时序预测算法,通过预测效果验证FRA算法的有效性。实验结果表明,引入TSFs作为数据驱动模型的训练向量能够兼具数据降维、降噪及强相关特性地维持,从而避免模型过拟合并缓解模型欠拟合,提高时序预测算法的准确性和鲁棒性。
中图分类号:
| [1]REN S G,ZHANG J X,GU X J,et al.Overview of Feature Extraction Algorithms for Time Series[J].Journal of Chinese Computer Systems,2021,42(2):271-278. [2]ZHAO D F,HUANG Y L,HUANG D M,et al.Research ontime series motif association rule mining method based on AR_TSM[J].Application Research of Computers,2021,38(2):403-408. [3]YANG H,WANG H Q,CHENG D J.Series Outlier Data Mi-ning Based on Forecastment[J].Computer Science,2004(4):117-119,146. [4]YE L,KEOGH E.Time series shapelets:a novel technique that allows accurate,interpretable and fast classification[J].Data Mining and Knowledge Discovery,2011,22:149-182. [5]WAN C,LI W Z,DING W X,et al.A Multivariate Time Series Forecasting Algorithm Based on Self-Evolution and Pre-training[J].Chinese Journal of Computers,2022,45(3):513-525. [6]JIA J,HU X S,DENG Z W,et al.Data-driven Comprehensive Evaluation of Lithium-ion Battery State of Health and Abnormal Battery Screening[J].Journal of Mechanical Engineering,2021(3):87-97,57. [7]SHI X,CHEN Z,WANG H,et al.Convolutional LSTM Net-work:A Machine Learning Approach for Precipitation Nowcas-ting[J].arXiv:1506.04214,2015. [8]VASWANI A.Attention is All You Need[J].arXiv:1706.03762,2017. [9]ELHASSAN T A M,RAHIM M S M,SWEE T T,et al.eature Extraction of White Blood Cells Using CMYK-Moment Localization and Deep Learning in Acute Myeloid Leukemia Blood Smear Microscopic Images[C]//IEEE Access.2022:16577-16591. [10]LIU L,ZHU J C,HAN G J,et al.Bearing health monitoring and fault diagnosis based on joint feature extraction in one-dimensional convolution neural network[J].Ruan Jian Xue Bao/Journal of Software,2021,32(8):2379-2390. [11]MA C C,DU X H,CAO L F,et al.Burst-Analysis Website Fingerprinting Attack Based on Deep Neural Network[J].Journal of Computer Research and Development,2020,57(4):746-766. [12]ZOU X Y.TIme series prediction algorithm based on graph laplace transform and extreme learning machine[J].Computer Applications and Software,2021,38(4):288-294. [13]GUO Y H,LU J Y,HUANG C H,et al.Mesh Texture Smoothing Based on Hybrid Spectral Encoding[J].Chinese Journal of Computers,2021,44(2):318-333. [14]JIA Z Y,LIN Y F,LIU T H,et al.Motor Imagery Classification Based on Multiscale Feature Extraction and Squeeze-Excitation Model[J].Journal of Computer Research and Development,2020,57(12):2481-2489. [15]LIU Y Y,LI J P,BAI H F,et al.Trend feature extraction me-thod for time series based on turning point and trend segment[J].Journal of Computer Applications,2020,40( S1):92-97. [16]ZHOU Q,WU T J.Trend feature extraction method based onimportant points in time series[J].Journal of Zhejiang University(Engineering Science),2007(11):1782-1787. [17]WIJSEN J.Trends in databases:reasoning and mining[J].IEEE Transactions on Knowledge and Data Engineering,2001,13(3):426-438. [18]WEN Q,GAO J,SONG X,et al.RobustSTL:A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:5409-5416. [19]CLEVELAND R B,CLEVELAND W S.STL:A seasonal-trend decomposition procedure based on Loess[J].Journal of official statistics,1990,6(1):3-73. |
|
||