计算机科学 ›› 2024, Vol. 51 ›› Issue (2): 55-62.doi: 10.11896/jsjkx.221200169
许天月1, 柳先辉2, 赵卫东2
XU Tianyue1, LIU Xianhui2, ZHAO Weidong2
摘要: 为了解决协同过滤推荐算法中存在的冷启动以及数据稀疏性等问题,文中引入了具有丰富语义信息和路径信息的知识图谱。基于其结构特征,将图神经网络应用于知识图谱的推荐算法得到了研究者的青睐。推荐算法的核心在于获取物品特征和用户特征,然而,该方面研究的重点在于更好地表达物品特征,而忽略了用户特征的表示。文中在知识图谱图神经网络的基础上,提出了一种基于知识图谱与用户兴趣的推荐算法。该算法通过引入一个独立的用户兴趣捕获模块,来学习用户历史信息,引入了用户兴趣,使得推荐算法在用户和物品两个方面都得到了良好表征。实验结果表明,在MovieLens数据集上,基于知识图谱与用户兴趣的推荐算法实现了数据的充分利用,具有良好的效果,对推荐准确性起到了促进作用。
中图分类号:
[1]JI S,PAN S,CAMBRIA E,et al.A survey on knowledgegraphs:Representation,acquisition,and applications[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(2):494-514. [2]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [3]WANG H,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference.2019:3307-3313. [4]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780. [5]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].Advances in Neural Information Processing Systems,2017,30:5998-6008. [6]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [7]RENDLE S,GANTNER Z,FREUDENTHALER C,et al.Fast context-aware recommendations with factorization machines[C]//Proceedings of the 34th International ACM SIGIR Confe-rence on Research and Development in Information Retrieval.2011:635-644. [8]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear-ning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10. [9]HE X,CHUA T S.Neural factorization machines for sparse pre-dictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:355-364. [10]GUO H,TANG R,YE Y,et al.DeepFM:a factorization-machine based neural network for CTR prediction[J].arXiv:1703.04247,2017. [11]GUO Q,ZHUANG F,QIN C,et al.A survey on knowledge graph-based recommender systems[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(8):3549-3568. [12]ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:353-362. [13]WANG H,ZHANG F,WANG J,et al.Ripplenet:Propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Confe-rence on Information and Knowledge Management.2018:417-426. [14]ZHU D L,WEN Y,WAN Z C.Review of Recommendation Systems Based on Knowledge Graph[J].Data Analysis and Know-ledge Discovery,2021,5(12):1-13. [15]WU G D,ZHA Z K,TU L J,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15(1):14-24. [16]WU J,XIE H,JIANG H W.Survey of Graph Neural Network in Recommendation System[J].Journal of Frontiers of Computer Science and Technology,2022,16(10):2249-2263. [17]WANG H,ZHANG F,ZHANG M,et al.Knowledge-awaregraph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:968-977. [18]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2019:950-958. [19]ZHAO J,ZHOU Z,GUAN Z,et al.Intentgc:a scalable graph convolution framework fusing heterogeneous information for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2019:2347-2357. [20]SHA X,SUN Z,ZHANG J.Hierarchical attentive knowledgegraph embedding for personalized recommendation[J].Electro-nic Commerce Research and Applications,2021,48:101071. [21]LIU H,LI X G,HU L K,et al.Knowledge graph driven recommendation model of graph neural network[J].Journal of Computer Applications,2021,41(7):1865-1870. [22]FENG Y,HU B,LV F,et al.Atbrg:Adaptive target-behaviorrelational graph network for effective recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:2231-2240. [23]ZHOU G,ZHU X,SONG C,et al.Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1059-1068. [24]ZHOU G,MOU N,FAN Y,et al.Deep interest evolution network for click-through rate prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:5941-5948. [25]FENG Y,LV F,HU B,et al.Mtbrn:Multiplex target-behavior relation enhanced network for click-through rate prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:2421-2428. [26]DUAN W J,XIE J,XU X Y,et al.MIKU:Multi-layer User Interest Model Based on Knowledge Graph[J].Journal of Chinese Mini-Micro Computer Systems,2022,43(5):1006-1012. [27]SHEN D D,WANG H T,JIANG Y,et al.A sequence recommend algorithm based on knowledge graph embedding and multiple natural networks[J].Computer Engineering & Science,2020,42(9):1661-1669. [28]HARPER F M,KONSTAN J A.The movielens datasets:History and context[J].ACM Transactions on Interactive Intelligent Systems(TIIS),2015,5(4):1-19. [29]WANG H,ZHANG F,ZHAO M,et al.Multi-task feature lear-ning for knowledge graph enhanced recommendation[C]//The World Wide Web Conference.2019:2000-2010. [30]MA C,KANG P,LIU X.Hierarchical gating networks for sequential recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:825-833. [31]TAN Q,ZHANG J,YAO J,et al.Sparse-interest network for sequential recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.2021:598-606. |
|