计算机科学 ›› 2024, Vol. 51 ›› Issue (2): 73-78.doi: 10.11896/jsjkx.230100052
郭尚志, 廖晓峰, 鲜开义
GUO Shangzhi, LIAO Xiaofeng, XIAN Kaiyi
摘要: 随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先,采用FM进行特征组合,产生两类组合特征;其次,将一类特征组合作为聚类算法的输入进行聚类;最后,将另一类特征组合输入由聚类产生的分段GBDT+逻辑回归组合的模型中进行预测。在两个公开数据集中进行了多角度验证,结果表明与其他几类常用的点击预测算法相比,LRCS在点击预测上有一定的性能提升。
中图分类号:
[1]FOO L K,CHUA S L,IBRAHIM N.Attribute weighted naïve bayes classifier[J].Computers,Materials & Continua,2022,71(1):1945-1957. [2]HU R,ZHU X,ZHU Y,et al.Robust SVM with adaptive graph learning[J].World Wide Web,2020,23(3):1945-1968. [3]SHERWIN J S,CHARTIER J.Parameter optimization of logistic regression classifiers[J].BMC Neuroscience,2013,14(1):1-2. [4]TIAN X,WANG J,WEN Y,et al.Multi-attribute scientific docu-ments retrieval and ranking model based on GBDT and LR[J].Math.Biosci.Eng.,2022,19:3748-3766. [5]GHARIBSHAH Z,ZHU X,HAINLINE M.Deep learning for user interest and response prediction in online display adverti-sing[J].Data Science and Engineering,2020,5(1):12-26. [6]PI Q,BIAN W,ZHOU G,et al.Practice on long sequential user behavior modeling for click-through rate prediction[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2671-2679. [7]ZHOU G,ZHU X,SONG C,et al.Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1059-1068. [8]HUANG Q,XU Y Y,CHEN Y,et al.An Adaptive Mechanism for Recommendation Algorithm Ensemble[J].IEEE ACCESS,2019,7:10331-10342. [9]SEDLMAIR M,MUNZNER T,TORY M.Empirical guidance on scatterplot and dimension reduction technique choices[J].IEEE Transactions on Visualization and Computer Graphics,2013,19(12):2634-2643. [10]RENDLES.Factorization machines[C]//2010 IEEE Interna-tional Conference on Data Mining.IEEE,2010:995-1000. [11]JUAN Y,ZHUANG Y,CHIN W S,et al.Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems.2016:43-50. [12]GUO H,TANG R,YE Y.DeepFM:A Factorization-Machine-based Neural Network for CTR Prediction[J].Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne,Australia,2017:1725-1731. [13]WANG R,FU B,FU G,et al.Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD’17.2017:1-7. [14]GÜNER S,CODAL K S,GECER H S,et al.Using k-means clustering algorithm in the identification of traffic accident patterns: the application of Sakarya province[J].Journal of Business Science,2018,6(3):89-105. [15]ISHIKAWA T,YATA N,NAGAO T.Automatic Classification of Paper Using Combinational Optimization of Image Features[J].Japan Tappi Journal,2011,65(6):595-604. [16]XIAO J,YE H,HE X,et al.Attentional factorization machines:Learning the weight of feature interactions via attention networks[J].arXiv:1708.04617,2017. [17]QU Y,CAIH R.Product-based neural networks for user re-sponse prediction[C]//Proceedings of the IEEE International Conference on DataMining.Barcelona,Spain,2016:6. [18]LIU B,TANG R,CHEN Y,et al.Feature generation by convolutional neural network for click-through rate prediction[C]//The World Wide Web Conference.2019:1119-1129. [19]HE X,CHUA T S.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:355-364. [20]MOSKVICHEV O,NIKISHCHENKOV S,MOSKVICHEVAE.Optimization of production and transport infrastructure based on cluster analysis methods[C]//E3S Web of Conferences.EDP Sciences,2020,164:03008. [21]MARTÍNEZ-CEVALLOS D,PROAÑO-GRIJALVA A,AL-GUACIL M,et al.Segmentation of participants in a sports event using cluster analysis[J].Sustainability,2020,12(14):5641. [22]AGARWAL N,HAQUE E,LIUH,et al.Research paper recommender systems:A subspace clustering approach[C]//International Conference on Web-Age Information Management.Berlin,Heidelberg:Springer,2005:475-491. [23]SUN X H,ZHANG L.Collaborative filtering recommendationalgorithm based on scoring region subspace [J].Computer Science,2022,49(7):50-56. [24]RISHICKESH R,SHAHINA A,NAYEEMULLA KHAN A.Predicting forest fires using supervised and ensemble machine learning algorithms[J]. International Journal Recent Technology Engineering,2019,8:3697-3705. [25]DÉSIR C,BERNARD S,PETITJEAN C,et al.One class random forests[J].Pattern Recognition,2013,46(12):3490-3506. [26]VANI M S,RAJASHREE S.Forecast of Mobile Ad ClickThrough Logistic Regression Algorithm[J].Journal of Innovation in Computer Science and Engineering,2016,6(1):29-32. [27]WANG S,SUN G,LI Y.SVD++ recommendation algorithm based on backtracking[J].Information,2020,11(7):369. [28]JUNG H G.Medoid selection from sub-tree leaf nodes for k-medoid clustering-based hierarchical template tree construction[J].Electronics Letters,2013,49(2):108-109. [29]BIJALWAN A,PUROHIT K C,MALIK P,et al.A Self-Adap-table Angular Based K-Medoid Clustering Scheme(SAACS) for Dynamic VANETs[J].Electronics,2022,11(19):3071. [30]LI J,HUANG Y,QIAO M,et al.Effects of water soaked height on the deformation and crushing characteristics of loose gangue backfill material in solid backfill coal mining[J].Processes,2018,6(6):64. [31]WANG Q,LIU F,ZHAO X,et al.Session interest model forCTR prediction based on self-attention mechanism[J].Scientific Reports,2022,12(1):1-13. |
|