计算机科学 ›› 2024, Vol. 51 ›› Issue (3): 155-164.doi: 10.11896/jsjkx.221200153

• 计算机图形学&多媒体 • 上一篇    下一篇

外观融合运动感知的运动目标分割算法

徐邦武1, 吴秦1,2, 周浩杰1   

  1. 1 江南大学人工智能与计算机学院 江苏 无锡214122
    2 江苏省模式识别与计算智能工程实验室 江苏 无锡214122
  • 收稿日期:2022-12-27 修回日期:2023-06-05 出版日期:2024-03-15 发布日期:2024-03-13
  • 通讯作者: 周浩杰(zhouhaojie@jiangnan.edu.cn)
  • 作者简介:(1658576022@qq.com)
  • 基金资助:
    国家自然科学基金(61972180)

Appearance Fusion Based Motion-aware Architecture for Moving Object Segmentation

XU Bangwu1, WU Qin1,2, ZHOU Haojie1   

  1. 1 School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi,Jiangsu 214122,China
    2 Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence,Wuxi,Jiangsu 214122,China
  • Received:2022-12-27 Revised:2023-06-05 Online:2024-03-15 Published:2024-03-13
  • About author:XU Bangwu,born in 1998,postgra-duate,is a member of CCF(No.N9250G).His main research interests include computer vision and deep lear-ning.ZHOU Haojie,born in 1981,Ph.D,associate professor,is a member of CCF(No.19225S).His main research intere-sts include system architecture,intelligent system and distributed computing.
  • Supported by:
    National Natural Science Foundation of China(61972180).

摘要: 现实场景中的运动目标分割旨在分割当前场景下的运动物体,对于许多计算机视觉应用有着至关重要的作用。现有的运动目标分割算法大多通过2D光流图中的运动信息来分割运动物体,然而,这些方法还存在一些问题。当运动物体在极面内运动或者其3D运动方向和背景一致时,很难通过光流图分割得到;另外,错误的光流预测也会影响分割的结果。为了解决以上问题,提出了不同的运动代价,以提升运动目标分割的正确率。针对和背景共线或共面运动的物体,设计均衡重投影代价和多角度光流对比代价,通过运动物体的2D光流与背景2D光流的差异来检测运动物体。针对自我运动退化,设计差异单应性代价。最后,提出了一种基于外观融合的运动感知结构,以分割各种场景下的运动物体。采用多模态共同注意力门控,更有效地捕获运动特征和外观特征的关系,以促进外观特征和运动特征更好地交互。此外,为了突出运动的物体,提出了多层运动注意力模块,以减少冗余的外观特征对结果的影响。实验结果表明,所提方法在KITTI,JNU-UISEE,KittiMoSeg和Davis-2016数据集上均能获得较优的运动目标分割结果。

关键词: 运动目标分割, 均衡重投影代价, 多角度光流对比代价, 多模态共同注意力门控, 多层运动注意力模块

Abstract: Moving object segmentation aims to segment all moving objects in the current scene,and it is of critical significance for many computer vision applications.At present,many moving object segmentation methods use the motion information from 2D optical flow maps to segment moving objects,which have many defects.For moving objects moving in the epipolar plane or moving objects whose 3D motion direction are consistent with the background,it is difficult to identify these objects by the 2D optical flow maps.Besides,incorrect 2D optical flow also effects the result of moving object segmentation.To solve the above problems,this paper proposes different motion costs to improve the performance of moving object segmentation.In order to detect moving objects with coplanar and collinear motion,this paper proposes a balanced reprojection cost and a multi-angle optical flow contrast cost,which measures the difference between the 2D optical flow of moving objects and that of the background.For ego-motion degeneracy,this paper designs a differential homography cost.To segment moving objects in complex scenes,this paper proposes an appearance fusion based motion-aware architecture.In this architecture,in order to effectively fuse appearance features and motion features of objects,the multi-modality co-attention gate is adapted to achieve better interaction between appearance and motion cues.Besides,to emphasize moving objects,this paper introduces a multi-level motion based attention module to suppress redundant and misleading information.Extensive experiments are conducted on the KITTI dataset,the JNU-UISEE dataset,the KittiMoSeg dataset and the Davis-2016 dataset,and the proposed method achieves excellent performance.

Key words: Moving object segmentation, Balanced reprojection cost, Multi-angle optical flow contrast cost, Multi-modality co-attention gate, Multi-level motion based attention module

中图分类号: 

  • TP391.413
[1]PHILIP H S T.Geometric motion segmentation and model selection[J].Philosophical Transactions-Royal Society Mathema-tical,Physical and Engineering Sciences,1998,356(1740):1321-1340.
[2]RAHMATI H,DRAGON R,AAMO O M,et al.Weakly supervised motion segmentation with particle matching[J].Computer Vision and Image Understanding,2015,140:30-42.
[3]THAKOOR N,GAO J,DEVARAJAN V.Multibody Structure-and-Motion Segmentation by Branch-and-Bound Model Selection[J].IEEE Transactions on Image Processing,2010,19(6):1393-1402.
[4]DAVE A,TOKMAKOV P,RAMANAN D.Towards Segmenting Anything That Moves[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop(ICCVW).Piscataway,NJ:IEEE,2020:1493-1502.
[5]TOKMAKOV P,SCHMID C,ALAHARI K.Learning to Segment Moving Objects[J].International Journal of Computer Vision,2019,127(3):282-301.
[6]YANG G,RAMANAN D.Learning to Segment Rigid Motions from Two Frames[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2021:1266-1275.
[7]YANG S,ZHANG L,QI J,et al.Learning Motion-Appearance Co-Attention for Zero-Shot Video Object Segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV).Piscataway,NJ:IEEE,2022:1544-1553.
[8]TORR P H S,FITZGIBBON A W,ZISSERMAN A.The Pro-blem of Degeneracy in Structure and Motion Recovery from Un-calibrated Image Sequences[J].International Journal of Computer Vision,1999,32(1):27-44.
[9]ZHU X,WANG L,ZHANG C,et al.Moving Object Detection Based on Continuous Constraint Background Model Deduction [J].Computer Science,2019,46(6):311-315.
[10]ZHANG N,SHI J H,YI J,et al.Real-time tracking method ofunderground moving target based on weighted centroid positioning[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(5):1458-1464.
[11]XU Y K,CHEN T Y,CHEN S Y,et al.Multi-object Tracking and Segmentation Algorithm by Fusing Motion Feature Embedding[J].Journal of Chinese Computer Systems.2023,44(6):1304-1310.
[12]TOKMAKOV P,ALAHARI K,SCHMID C.Learning Motion Patterns in Videos[C]//Proceedings of the 2017 IEEE Confe-rence on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2017:531-539.
[13]RASHED H,RAMZY M,VAQUERO V,et al.FuseMODNet:Real-Time Camera and LiDAR Based Moving Object Detection for Robust Low-Light Autonomous Driving[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop(ICCVW).Piscataway,NJ:IEEE,2020:2393-2402.
[14]JAIN S D,XIONG B,GRAUMAN K.FusionSeg:Learning toCombine Motion and Appearance for Fully Automatic Segmentation of Generic Objects in Videos[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Pisca-taway,NJ:IEEE,2017:2117-2126.
[15]LU X,WANG W,MA C,et al.See More,Know More:Unsupervised Video Object Segmentation With Co-Attention Siamese Networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Pisca-taway,NJ:IEEE,2020:3618-3627.
[16]ZHOU T,WANG S,ZHOU Y,et al.Motion-Attentive Transition for Zero-Shot Video Object Segmentation[C]//Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence(AAAI).Menlo Park,CA:AAAI,2020,34(7):13066-13073.
[17]CHENG J,TSAI Y H,WANG S,et al.SegFlow:Joint Learning for Video Object Segmentation and Optical Flow[C]//Procee-dings of the 2017 IEEE International Conference on Computer Vision(ICCV).Piscataway,NJ:IEEE,2017:686-695.
[18]LI S,SEYBOLD B,VOROBYOV A,et al.Unsupervised Video Object Segmentation with Motion-Based Bilateral Networks[C]//Proceedings of the Computer Vision(ECCV 2018).New York,NY:Springer International Publishing,2018:215-231.
[19]HU P,WANG G,KONG X,et al.Motion-Guided Cascaded Refinement Network for Video Object Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):1957-1967.
[20]PENG Q,CHEUNG Y M.Automatic Video Object Segmenta-tion Based on Visual and Motion Saliency[J].IEEE Transactions on Multimedia,2019,21(12):3083-3094.
[21]LI H,CHEN G,LI G,et al.Motion Guided Attention for Video Salient Object Detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV).Pisca-taway,NJ:IEEE,2020:7273-7282.
[22]JI G P,FU K,WU Z,et al.Full-Duplex Strategy for Video Object Segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV).Pisca-taway,NJ:IEEE,2022:4902-4913.
[23]ZHOU X,WANG D,KRäHENBüHL P.Objects as points[J].arXiv:1904,07850,2019.
[24]YU F,WANG D,SHELHAMER E,et al.Deep Layer Aggregation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2018:2403-2412.
[25]BRACHMANN E,ROTHER C.Neural-Guided RANSAC:Learning Where to Sample Model Hypotheses[C]//Procee-dings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV).Piscataway,NJ:IEEE,2020:4321-4330.
[26]YANG G,RAMANAN D.Upgrading Optical Flow to 3D Scene Flow Through Optical Expansion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2020:1331-1340.
[27]YANG G,RAMANAN D.Volumetric Correspondence Net-works for Optical Flow[C]//Proceedings of the Proceedings of the 33rd International Conference on Neural Information Processing Systems(NIPS).New York,NY:Curran Associates Inc.,2019:794-805.
[28]CHUM O,PAJDLA T,STURM P.On Geometric Error for Homographies[J].Computer Vision and Image Understanding,2005,97:86-102.
[29]XIE E,SUN P,SONG X,et al.PolarMask:Single Shot Instance Segmentation With Polar Representation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2020:12190-12199.
[30]GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2012:3354-3361.
[31]SIAM M,MAHGOUB H,ZAHRAN M,et al.MODNet:Motion and Appearance based Moving Object Detection Network for Autonomous Driving[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems(ITSC).Piscataway,NJ:IEEE,2018:2859-2864.
[32]PERAZZI F,PONT-TUSET J,MCWILLIAMS B,et al.ABenchmark Dataset and Evaluation Methodology for Video Object Segmentation[C]//Proceedings of the 2016 IEEE Confe-rence on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2016:724-732.
[33]MENZE M,GEIGER A.Object scene flow for autonomous vehicles[C]//Proceedings of the 2015 IEEE Conference on Compu-ter Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2015:3061-3070.
[34]OCHS P,MALIK J,BROX T.Segmentation of Moving Objects by Long Term Video Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(6):1187-1200.
[35]RANJAN A,JAMPANI V,BALLES L,et al.Competitive Collaboration:Joint Unsupervised Learning of Depth,Camera Motion,Optical Flow and Motion Segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2020:12232-12241.
[36]WANG C,LI C,LIU J,et al.U2-ONet:A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation [J].arXiv:2007.13092,2020.
[37]LIU D,YU D,WANG C,et al.F2Net:Learning to Focus on the Foreground for Unsupervised Video Object Segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI).Menlo Park,CA:AAAI,2021,:2109-2117.
[38]LU X,WANG W,SHEN J,et al.Zero-Shot Video Object Segmentation With Co-Attention Siamese Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(4):2228-2242.
[39]LIU Z,LIU J,CHEN W,et al.FAMINet:Learning Real-Time Semisupervised Video Object Segmentation With Steepest Optimized Optical Flow[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-16.
[40]CHO S,LEE H,KIM M,et al.Pixel-Level Bijective Matching for Video Object Segmentation[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV).Piscataway,NJ:IEEE,2022:1453-1462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!