计算机科学 ›› 2023, Vol. 50 ›› Issue (3): 246-253.doi: 10.11896/jsjkx.220100219
张译1, 吴秦1,2
ZHANG Yi1, WU Qin1,2
摘要: 人群计数旨在准确估计图像中的总人数并呈现其分布。相关数据集中的图像通常涉及各类场景且包含多人。为节约人力,大多数数据集通常在每个人头部以单点标注作为标签。然而,点标签无法囊括人头部的完整范围,使得人群特征与分布标签的匹配难以收敛,预测值无法聚集在前景区域,严重影响密度估计图质量和模型计数准确度。为了解决这个问题,使用计数损失来约束全图上的预测值范围,并佐以像素级的分布一致损失优化密度图匹配过程。此外,复杂场景中存在许多易与人群特征混淆的背景噪声,为了避免假阳性预测对后续计数和密度图估计的干扰,提出前景分割模块和特征增强损失来自适应地聚焦前景区域,并加大前景位置上人头特征对计数的贡献,从而达到抑制背景误判的作用。此外,为了使网络更好地适应人头的多尺度形态,对每个待训练图片分别进行上下采样操作,以获得具有同目标的多尺度形态。在多个数据集上进行了实验,结果表明,与最先进的方法相比,所提方法取得了更好或更有竞争力的结果。
中图分类号:
[1]LIN S F,CHEN J Y,CHAO H X.Estimation of number of people in crowded scenes using perspective transformation[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2001,31(6):645-654. [2]ZHAO T,NEVATIA R.Bayesian human segmentation incrowded situations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2003. [3]LI M,ZHANG Z X,HUANG K Q,et al.Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection[C]//Proceedings of the IEEE International Conference on Pattern Recognition.IEEE,2008:1-4. [4]GE W,COLLINS R T.Marked point processes for crowd coun-ting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:2913-2920. [5]CHAN A B,LIANG Z S J,VASCONCELOS N.Privacy preserving crowd monitoring:Counting people without people models or tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2008:1-7. [6]RYAN D,DENMAN S,FOOKES C,et al.Crowd counting using multiple local features[C]//Digital Image Computing:Techniques and Applications.2009:81-88. [7]CHEN K,GONG S,XIANG T,et al.Cumulative attribute space for age and crowd density estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2013:2467-2474. [8]LIU B,VASCONCELOS N.Bayesian model adaptation forcrowd counts[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2015:4175-4183. [9]WANG C,ZHANG H,YANG L,et al.Deep people counting in extremely dense crowds[C]//Proceedings of the 2015 ACM Multimedia Conference.ACM,2015:1299-1302. [10]SHANG C,AI H,BAI B.End-to-end crowd counting via joint learning local and global count[C]//Proceedings of the IEEE International Conference on Image Processing.IEEE,2016:1215-1219. [11]XIONG F,SHI X,YEUNG D Y.Spatiotemporal modeling for crowd counting in videos[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2017:5161-5169. [12]SHI Z L,ZHANG L,LIU Y,et al.Crowd counting with deep negative correlation learning[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2018:5382-5390. [13]LIU X L,WEIJER J,BAGDANOV A D.Leveraging unlabeled data for crowd counting by learning to rank[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:7661-7669. [14]RANJAN V,LE H,HOAI M.Iterative crowd counting[C]//Proceedings of the European Conference on Computer Vision.Springer,2018:270-285. [15]CAO X K,WANG Z P,ZHAO Y Y,et al.Scale aggregation network for accurate and efficient crowd counting[C]//Proceedings of the European Conference on Computer Vision.Springer,2018:734-750. [16]IDREES H,TAYYAB M,ATHREY K,et al.Composition loss for counting,density map estimation and localization in dense crowds[C]//Proceedings of the European Conference on Computer Vision.Springer,2018:532-546. [17]ZHANG Y Y,ZHOU D,CHEN S Q,et al.Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:589-597. [18]WANG B Y,LIU H D,SAMARAS D,et al.Distribution Matching for Crowd Counting[C]//Proceedings of the Advances in Neural Information Processing Systems.MIT Press,2020:1595-1607. [19]MODOLO D,SHUAI B,VARIOR R R,et al.Understanding the impact of mistakes on background regions in crowd counting[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision.IEEE,2021:1649-1658. [20]IDREES H,SALEEMI I,SEIBERT C,et al.Multi-source multi-scale counting in extremely dense crowd images[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2013:2547-2554. [21]SINDAGI V,YASARLA R,PATEL V M M.JHU-CROWD++:Large-scale crowd counting dataset and a benchmark method[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2020:1-17. [22]ARTETA C,LEMPITSKY V,ZISSERMAN A.Counting in the wild[C]//Proceedings of the European Conference on Computer Vision.Springer,2016:483-498. [23]SHI Z,METTES P,SNOEK C.Counting with focus for free[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2019:4199-4208. [24]WAN J,LUO W H,WU B Y,et al.Residual regression with semantic prior for crowd counting[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2019:4031-4040. [25]LI Y H,ZHANG X F,CHEN D M.Csrnet:Dilated convolu-tional neural networks for understanding the highly congested scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:1091-1100. [26]ZHANG C,KANG K,LIH S,et al.Data-driven crowd understanding:A baseline for a large-scale Crowd dataset[J].IEEE Transactions on Multimedia,2016,18(6):1048-1061. [27]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2016-08-22)[2021-04-06].https://arxiv.org/abs/1608.06197. [28]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2017:2999-3007. [29]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [30]KINGMA D P,BA J.Adam:A method for stochastic optimization[EB/OL].(2017-01-30)[2021-11-23].https://arxiv.org/abs/1412.6980v9. [31]PENG X,PENG Y X,TANG Q.Crowd Counting Based on Single-column Multi-scale Convolutional Neural Network[J].Computer Science,2019,47(4):150-156. [32]WAN J,CHAN A.Adaptive density map generation for crowd counting[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2019:1130-1139. [33]MA Z H,WEI X,HONG X P,et al.Bayesian loss for crowd count estimation with point supervision[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2019:6141-6150. [34]ABOUSAMRA S,HOAI M,SAMARAS D,et al.Localization in the crowd with topological constraints[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI Press,2021:872-881. [35]XU C F,LIANG D K,XU Y C,et al.Autoscale:learning to scale for crowd counting[J].International Journal of Computer Vision.2022,130:405-434. [36]THANASUTIVES P,FUKUI K,NUMAO M,et al.Encoder-decoder based convolutional neural networks with multi-scale-aware modules for crowd counting[C]//Proceedings of the IEEE International Conference on Pattern Recognition.IEEE,2021:2382-2389. [37]TIAN Y K,LEI Y M,ZHANG J P,et al.PaDNet:Pan-density crowd counting[J].IEEE Transactions on Image Processing.2019,29:2714-2727. [38]SINDAGI V A,PATEL V M.Generating high-quality crowddensity maps using contextual pyramid cnns[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2017:1861-1870 [39]ZHANG A,YUE L,SHEN J,et al.Attentional neural fifields for crowd counting[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2019:5714-5713. [40]GUO,D,LI,K,ZHA Z J,et al.DADNet:Dilated-Attention-Deformable ConvNet for Crowd Counting[C]//Proceedings of the 27th ACM International Conference on Multimedia.ACM,2019:1823-1832. [41]LIU N,LONG Y C,ZOU C Q,et al.ADCrowdNet:An attention-injective deformable convolutional network for crowd understanding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2019:3225-3234. [42]LIU C C,WENG X Y,MU Y D.Recurrent attentive zooming for joint crowd counting and precise localization[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2019:1217-1226. [43]LIU W Z,SALZMANN M,FUA P.Context-aware crowdcounting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2019:5094-5103. |
[1] | 董永峰, 黄港, 薛婉若, 李林昊. 融合IRT的图注意力深度知识追踪模型 Graph Attention Deep Knowledge Tracing Model Integrated with IRT 计算机科学, 2023, 50(3): 173-180. https://doi.org/10.11896/jsjkx.211200134 |
[2] | 华晓凤, 冯娜, 于俊清, 何云峰. 基于规则推理的足球视频任意球射门事件检测 Shooting Event Detection of Free Kick in Soccer Video Based on Rule Reasoning 计算机科学, 2023, 50(3): 181-190. https://doi.org/10.11896/jsjkx.220300062 |
[3] | 梅鹏程, 杨吉斌, 张强, 黄翔. 一种基于三维卷积的声学事件联合估计方法 Sound Event Joint Estimation Method Based on Three-dimension Convolution 计算机科学, 2023, 50(3): 191-198. https://doi.org/10.11896/jsjkx.220500259 |
[4] | 白雪飞, 马亚楠, 王文剑. 基于特征融合的边缘引导乳腺超声图像分割方法 Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion 计算机科学, 2023, 50(3): 199-207. https://doi.org/10.11896/jsjkx.211200294 |
[5] | 刘航, 普园媛, 吕大华, 赵征鹏, 徐丹, 钱文华. 极化自注意力约束颜色溢出的图像自动上色 Polarized Self-attention Constrains Color Overflow in Automatic Coloring of Image 计算机科学, 2023, 50(3): 208-215. https://doi.org/10.11896/jsjkx.220100149 |
[6] | 陈亮, 王璐, 李生春, 刘昌宏. 基于深度学习的可视化仪表板生成技术研究 Study on Visual Dashboard Generation Technology Based on Deep Learning 计算机科学, 2023, 50(3): 238-245. https://doi.org/10.11896/jsjkx.230100064 |
[7] | 应宗浩, 吴槟. 深度学习模型的后门攻击研究综述 Backdoor Attack on Deep Learning Models:A Survey 计算机科学, 2023, 50(3): 333-350. https://doi.org/10.11896/jsjkx.220600031 |
[8] | 邹芸竹, 杜圣东, 滕飞, 李天瑞. 一种基于多模态深度特征融合的视觉问答模型 Visual Question Answering Model Based on Multi-modal Deep Feature Fusion 计算机科学, 2023, 50(2): 123-129. https://doi.org/10.11896/jsjkx.211200303 |
[9] | 王鹏宇, 台文鑫, 刘芳, 钟婷, 罗绪成, 周帆. 基于数据增强的自监督飞行航迹预测 Self-supervised Flight Trajectory Prediction Based on Data Augmentation 计算机科学, 2023, 50(2): 130-137. https://doi.org/10.11896/jsjkx.211200016 |
[10] | 郭楠, 李婧源, 任曦. 基于深度学习的刚体位姿估计方法综述 Survey of Rigid Object Pose Estimation Algorithms Based on Deep Learning 计算机科学, 2023, 50(2): 178-189. https://doi.org/10.11896/jsjkx.211200164 |
[11] | 李俊林, 欧阳智, 杜逆索. 基于改进区域候选网络的场景文本检测 Scene Text Detection with Improved Region Proposal Network 计算机科学, 2023, 50(2): 201-208. https://doi.org/10.11896/jsjkx.211000191 |
[12] | 华杰, 刘学亮, 赵烨. 基于特征融合的小样本目标检测 Few-shot Object Detection Based on Feature Fusion 计算机科学, 2023, 50(2): 209-213. https://doi.org/10.11896/jsjkx.220500153 |
[13] | 梁佳利, 华保健, 苏少博. 融合循环划分的张量指令生成优化 Tensor Instruction Generation Optimization Fusing with Loop Partitioning 计算机科学, 2023, 50(2): 374-383. https://doi.org/10.11896/jsjkx.220300147 |
[14] | 蔡肖, 陈志华, 盛斌. 基于移位窗口金字塔Transformer的遥感图像目标检测 SPT:Swin Pyramid Transformer for Object Detection of Remote Sensing 计算机科学, 2023, 50(1): 105-113. https://doi.org/10.11896/jsjkx.211100208 |
[15] | 王斌, 梁宇栋, 刘哲, 张超, 李德玉. 亮度自调节的无监督图像去雾与低光图像增强算法研究 Study on Unsupervised Image Dehazing and Low-light Image Enhancement Algorithms Based on Luminance Adjustment 计算机科学, 2023, 50(1): 123-130. https://doi.org/10.11896/jsjkx.211100058 |
|