计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 364-374.doi: 10.11896/jsjkx.230300185

• 计算机网络 • 上一篇    下一篇

基于边缘计算的自适应稀疏传感网目标覆盖算法

李洁, 汪耀, 陈侃松, 许立君   

  1. 湖北大学计算机与信息工程学院 武汉 430062
  • 收稿日期:2023-03-23 修回日期:2023-09-25 出版日期:2024-06-15 发布日期:2024-06-05
  • 通讯作者: 许立君(xulijun@hubu.edu.cn)
  • 作者简介:(lijneu@163.com)
  • 基金资助:
    湖北省自然科学基金青年项目(2023AFB313);湖北省重点研发计划(2021BAA184,2022BAA045);湖北省教育厅青年人才项目(202211901301002);武汉市知识创新专项-曙光计划项目(202211901251327)

Adaptive Sparse Sensor Network Target Coverage Algorithm Based on Edge Computing

LI Jie, WANG Yao, CHEN Kansong, XU Lijun   

  1. School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China
  • Received:2023-03-23 Revised:2023-09-25 Online:2024-06-15 Published:2024-06-05
  • About author:LI Jie,born in 1988,Ph.D,master supervisor,lecturer.Her main research interests include future Internet technology and ad hoc network.
    XU Lijun,born in 1991,Ph.D,master supervisor.Her main research interests include image processing,digital twins and artificial intelligence.
  • Supported by:
    Young Programof the Natural Science Foundation Hubei Province,China(2023AFB313),Key Research and Development Program of Hubei Province of China(2021BAA184,2022BAA045),Department of Education Young Talents Program of Hubei Province of China(202211901301002) and Knowledge Innovation Project of Wuhan-“Dawn” Program(202211901251327).

摘要: 海洋探测是海洋开发的关键,如何快速高效地实现水下目标探测是海洋探测必须解决的问题。基于此,提出了一种基于边缘计算的自适应稀疏传感网目标覆盖优化算法,以较少的传感节点高效地完成水下目标探测。首先,通过Ad Hoc移动能耗优化策略机制,添加能量因子,在节点移动过程中保护能量较低的节点,优化传感网的能量均衡性;其次,提出了一种Ad Hoc贪婪探测机制,以最小的代价实现对未知区域的探测,快速完成目标覆盖;最后,利用基于虚拟力的自适应连通机制,通过增大虚拟引力范围解决节点移动过程中的断连问题,保证了稀疏自组织网络的连通性。仿真结果表明,所提算法能够用较少数量的移动传感器提供快速、持久的目标探测覆盖,相较于对比算法性能表现更优。

关键词: 水下自组织网络, 能耗, 边缘计算, 目标探测, 连通性

Abstract: Ocean exploration is the key to ocean development,and how to quickly and efficiently achieve underwater target detection is a problem that must be solved for ocean exploration.Based on this,an adaptive sparse sensing network target coverage optimization algorithm based on edge computing is proposed to efficiently accomplish underwater target detection with fewer sen-sing nodes.Firstly,the energy balance of the sensing network is optimized by adding an energy factor to protect the nodes with lower energy during the node movement through the Ad Hoc mobile energy optimization strategy mechanism.Secondly,an Ad Hoc greedy detection mechanism is proposed to achieve the detection of unknown areas with minimum cost and fast target cove-rage.Finally,using the virtual force-based adaptive connectivity mechanism,the connectivity of the sparse self-organized network is ensured by increasing the virtual gravitational range to solve the disconnection problem during the node movement.Simulation results show that the proposed algorithm is able to provide fast and durable target detection coverage with a smaller number of mobile sensors,with better performance compared to the comparison algorithms.

Key words: Underwater Ad-Hoc network, Energy consumption, Edge computing, Target detection, Connectivity

中图分类号: 

  • TP393.0
[1]XIA N,WEN X Y,DU H Z,et al.Study on hunting deployment of underwater sensors based on level set method[J].Chinese Journal of Computers,2021,44(5):1024-1036.
[2]ZHOU Z,YAO B,XING R,et al.E-CARP:An Energy Efficient Routing Protocol for UWSNs in the Internet of Underwater Things[J].IEEE Sensors Journal,2016,16(11):4072-4082.
[3]LUO C,CAO Y,XIN G,et al.Three-Dimensional Coverage Optimization of Underwater Nodes UnderMulticonstraints Combined With Water Flow[J].IEEE Internet of Things Journal,2022,9(3):2375-2389.
[4]COBANLAR M,YILDIZ H U,AKRAM V K,et al.On theTradeoff Between Network Lifetime and k-Connectivity-Based Reliability in UWSNs[J].IEEE Internet of Things Journal,2022,9(23):24444-24452.
[5]SU R,ZHANG D,LI C,et al.Localization and Data Collection inAUV-Aided Underwater Sensor Networks:Challenges and Opportunities[J].IEEE Network,2019,33(6):86-93.
[6]LIU Z,JIN X,YANG Y,et al.Energy-Efficient Guiding-Network-Based Routing for Underwater Wireless Sensor Networks[J].IEEE Internet of Things Journal,2022,9(21):21702-21711.
[7]ZHAO X Q,CUI Y P,GAO C Y,et al.Energy-Efficient Cove-rage Enhancement Strategy for 3-D Wireless Sensor Networks Based on a Vampire Bat Optimizer[J].IEEE Internet of Things Journal,2020,7(1):325-338.
[8]YAO Y,LI Y,XIE D,et al.Coverage Enhancement Strategy for WSNs Based on Virtual Force-Directed Ant Lion Optimization Algorithm[J].IEEE Sensors Journal,2021,21(17):19611-19622.
[9]WEN Q,ZHAO X Q,CUI Y P,et al.Coverage Enhancement Algorithm for WSNs Based on Vampire Bat and Improved Virtual Force[J].IEEE Sensors Journal,2022,22(8):8245-8256.
[10]LUO C,WANG B,CAO Y,et al.A hybrid coverage control for enhancing UWSN localizability using IBSO-VFA[J].Ad Hoc Networks,2021,123:102694.
[11]YAO P,QIU L,QI J,et al.AUV path planning for coverage search of static target in ocean environment[J].Ocean Enginee-ring,2021,241:110050.
[12]LIU Y,CHIN K W,YANG C,et al.Nodes Deployment for Co-verage in Rechargeable Wireless Sensor Networks[J].IEEE Transactions on Vehicular Technology,2019,68(6):6064-6073.
[13]XIONG Y,CHEN G,LU M,et al.A Two-Phase Lifetime-Enhancing Method for Hybrid Energy-Harvesting Wireless Sensor Network[J].IEEE Sensors Journal,2020,20(4):1934-1946.
[14]GUO J,JAFARKHANI H.Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range[J].IEEE Transactions on Wireless Communications,2019,18(7):3469-3484.
[15]XU X,DAI Z,SHAN A,et al.Connected Target ε -probability Coverage in WSNs With Directional Probabilistic Sensors[J].IEEE Systems Journal,2020,14(3):3399-3409.
[16]YI J,QIAO G,YUAN F,et al.Sensor Deployment Strategies for Target Coverage Problems in Underwater Acoustic Sensor Networks[J].IEEE Communications Letters,2023,27(3):836-840.
[17]ZHU X,ZHOU M,ABUSORRAH A.Optimizing Node Deployment in Rechargeable Camera Sensor Networks for Full-View Coverage[J].IEEE Internet of Things Journal,2022,9(13):11396-11407.
[18]ZHOU M,CHEN H,SHU L,et al.UAV-Assisted Sleep Sche-duling Algorithm for Energy-Efficient Data Collection in Agricultural Internet of Things[J].IEEE Internet of Things Journal,2022,9(13):11043-11056.
[19]YANG C,CHIN K W,LIU Y,et al.Robust Targets Coverage for Energy Harvesting Wireless Sensor Networks[J].IEEE Transactions on Vehicular Technology,2019,68(6):5884-5892.
[20]ZHU X,LI J,ZHOU M.Target Coverage-Oriented Deploy-ment of Rechargeable Directional Sensor Networks with a Mobile Charger[J].IEEE Internet of Things Journal,2019,6(3):5196-5208.
[21]KATTI A.Target coverage in random wireless sensor networksusing cover sets[J].Journal of King Saud University-Computer and Information Sciences,2022,34(3):734-746.
[22]NGUYEN P L,HANH N T,KHUONG N T,et al.Node placement for connected target coverage in wireless sensor networks with dynamic sinks[J].Pervasive and Mobile Computing,2019,59:101070.
[23]ROUT M,ROY R.Self-Deployment of Mobile Sensors toAchieve Target Coverage in the Presence of Obstacles[J].IEEE Sensors Journal,2016,16(14):5837-5842.
[24]HOWARD A,MATARIC′ M J,SUKHATME G S.Mobile Sensor Network Deployment using Potential Fields:A Distributed,Scalable Solution to the Area Coverage Problem[C]//Distributed Autonomous Robotic Systems.Tokyo:Springer,2002:299-308.
[25]HONG C J,GAO Y,ZHANG F,et al.Reliable TransmissionStrategy for Underwater Wireless Sensor Networks[J].Computer Science,2021,48(6A):410-413.
[26]李习习,强俊,刘无纪,等.基于双主干网络的雾天交通目标检测方法研究[J].重庆工商大学学报(自然科学版),2023,40(4):25-34.
[27]WAHID A,LEE S,KIM D.An energy-efficient routing protocol for UWSNs using physical distance and residual energy[C]//OCEANS 2011 IEEE.Spain:IEEE Press,2011:1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!