计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230300204-8.doi: 10.11896/jsjkx.230300204
王国刚, 董志豪
WANG Guogang, DONG Zhihao
摘要: DeepLabv3+计算复杂度高,空洞空间金字塔池化模块难以突出重要通道特征,解码器生成的高语义化特征图缺乏足够的细节信息。针对上述问题,提出一种基于注意力机制与密集邻域预测的轻量化图像语义分割模型。该模型把MobileNet V2作为主干网络,减少了模型参数量;利用通道空洞空间金字塔池化提取多尺度信息,并对特征图的各通道加权,强化重要通道特征的学习;采用密集邻域预测融合高级特征与低级特征,细化分割结果。在PASCAL VOC 2012增强数据集上进行实验,结果表明,所提方法的平均交并比和平均像素精确度均高于其他7种主流对比算法。与DeepLabv3+相比,参数量与计算量分别减少184.82×106和90.83GFLOPs,该算法在提升分割精度的同时减少了计算开销。
中图分类号:
[1]CAI Y F,DAI L,WANG H,et al.Multi-Target Pan-Class In-trinsic Relevance Driven Model for Improving Semantic Segmentation in Autonomous Driving[J].IEEE Transactions on Image Processing,2021,30:9069-9084. [2]ZHOU W,BERRIO J S,WORRAL S,et al.Automated Evalua-tion of Semantic Segmentation Robustness for Autonomous Driving[J].IEEE Transactions on Intelligent Transportation Systems,2020,21(5):1951-1963. [3]YI D W,FANG H,HUA Y N,et al.Improving Synthetic to Realistic Semantic Segmentation With Parallel Generative Ensembles for Autonomous Urban Driving[J].IEEE Transactions on Cognitive and Developmental Systems,2022,14(4):1496-1506. [4]YIN P S,YUAN R,CHENG Y M,et al.Deep Guidance Network for Biomedical Image Segmentation[J].IEEE Access,2020,8:116106-116116. [5]ZHANG M,LI X,XU M J,et al.Automated Semantic Segmentation of Red Blood Cells for Sickle Cell Disease[J].IEEE Journal of Biomedical and Health Informatics,2020,24(11):3095-3102. [6]GAO Z J,HE Y,LI Y.A Novel Lightweight Swin-Unet Network for Semantic Segmentation of COVID-19 Lesion in CT Images[J].IEEE Access,2023,11:950-962. [7]IBRAHIM M,AKHTAR N,WISE M,et al.Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation[J].IEEE Access,2021,9:35984-35996. [8]SHI W J,XU J W,ZHU D C,et al.RGB-D Semantic Segmentation and Label-Oriented Voxelgrid Fusion for Accurate 3D Semantic Mapping[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(1):183-197. [9]YANG J F,ZHOU B C,QIU H D,et al.MLFNet-Point Cloud Semantic Segmentation Convolution Network Based on Multi-Scale Feature Fusion[J].IEEE Access,2021,9:44950-44962. [10]MINAEE S,BOYKOV Y,PORIKLI F,et al.Image Segmentation Using Deep Learning:A Survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(7):3523-3542. [11]LONG J,SHELHAMER E,DARRELL T,et al.Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Boston,MA,USA,2015:3431-3440. [12]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [13]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional Networks for Biomedical Image Segmentation[C]//International Conference on Medical image computing and computer-assisted intervention.Cham:Springer,2015:234-241. [14]ZHAO H S,SHI J P,QI X J,et al.Pyramid Scene Parsing Network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI,USA,2017:6230-6239. [15]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. [16]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-12-05)[2023-02-24].https://arxiv.org/abs/1706.05587. [17]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs[EB/OL].(2014-12-22)[2023-02-24].https://arxiv.org/abs/1412.7062. [18]FU J,LIU J,TIAN H J,et al.Dual Attention Network for SceneSegmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA,2019:3141-3149. [19]WANG X L,GIRSHICK R,GUPTA A,et al.Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA,2018:7794-803. [20]YIN M L,YAO Z H,CAO Y,et al.Disentangled non-local neu-ral networks[C]//Proceedings of the European Conference on Computer Vision.2020:191-207. [21]HUANG Z L,WANG X G,WEI C C,et al.CCNet:Criss-Cross Attention for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(6):6896-6908. [22]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. [23]CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI,USA,2017:1800-1807. [24]SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:Inverted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA,2018:4510-4520. [25]ZHANG Z L,ZHANG X Y,PENG C,et al.ExFuse:Enhancing Feature Fusion for Semantic Segmentation[C]//European Conference on Computer Vision.Charm:Springer,2018:273-288. [26]SHI W,CABALLERO J,HUSZAR F,et al.Real-Time SingleImage and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA,2016:1874-1883. [27]PENG C,ZHANG X Y,YU G,et al.Large Kernel Matters—Improve Semantic Segmentation by Global ConvolutionalNetwork[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI,USA,2017:1743-1751. |
|