计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800179-6.doi: 10.11896/jsjkx.230800179

• 人工智能 • 上一篇    下一篇

主实体增强型层叠指针网络在中文医学实体关系抽取中的应用

姜植瀚1, 昝红英2, 张莉3   

  1. 1 吉林大学软件学院 长春 130012
    2 郑州大学计算机与人工智能学院 郑州 450001
    3 吉林大学生命科学学院 长春 130012
  • 发布日期:2024-06-06
  • 通讯作者: 昝红英(iehyzan@zzu.edu.cn)
  • 作者简介:(2625190314@qq.com)

Application of Subject Enhanced Cascade Binary Pointer Tagging Framework in Chinese Medical Entity and Relation Extraction

JIANG Zhihan1, ZAN Hongying2, ZHANG Li3   

  1. 1 Collage of Software,Jilin University,Changchun 130012,China
    2 School of Computer and Artificial Intelligence,Zhengzhou University,Zhengzhou 450001,China
    3 Collage of Life Science,Jilin University,Changchun 130012,China
  • Published:2024-06-06
  • About author:JIANG Zhihan,born in 2003,undergraduate.His main research interests include natural language processing and mathematical optimization.
    ZAN Hongying,born in 1966,Ph.D,professor,Ph.D supervisor,is a member of CCF(No.E20-0008671S).Her main research interests include natural language processing and affective computing.

摘要: 随着中国医学事业的快速发展,中文医学文本的数量不断增加。为了从这些中文医学文本中提取有价值的信息,并解决中文医学领域的实体关系抽取问题,研究人员已经提出一系列基于双向LSTM的模型。然而,由于双向LSTM的训练速度等问题,文中引入了层叠指针网络框架来处理中文医学文本的实体关系抽取任务。为了弥补层叠指针网络框架中主实体识别能力不足以及解决复用编码层时的梯度问题,文中提出了主实体增强模块,并引入了条件层归一化方法,从而提出了面向中文医学文本的主语增强型层叠指针网络框架(Subject Enhanced Cascade Binary Pointer Tagging Framework for Chinese Medical Text,SE-CAS)。通过引入主实体增强模块,能够精确识别有效的主实体,并排除错误实体。此外,还使用条件层归一化方法来替代原模型中的简单相加方法,并将其应用于编码层和主实体编码层。实验结果证明,所提模型在CMeIE数据集上取得了5.73%的F1值提升。通过消融实验证实,各个模块均能带来性能提升,并且这些提升具有叠加效应。

关键词: 实体关系抽取, 层叠指针网络, 医学关系抽取, 深度学习, 主语识别

Abstract: With the rapid advancement of China’s biomedical industry,the volume of Chinese medical texts is escalating at a rapid pace.Extracting valuable information from these texts can ease the learning curve for practitioners.To tackle the challenge of entity relation extraction in the realm of Chinese medicine,a series of models based on bidirectional LSTM have been previously proposed.However,to overcome the training speed bottleneck inherent to bidirectional LSTM,this study introduces the Cascade binary pointer network framework to the domain of Chinese medical filed.To address the framework’s weak capability in identifying main entities and the gradient issues arising from reusing the coding layer,this paper introduces the main entity enhancement module and employs conditional layer normalization.This paper presents the subject enhanced cascade binary pointer tagging framework for chinese medical text (SE-CAS),tailored for Chinese medical text.The subject enhancement module accurately identifies valid subjects detected by the subject recognition module and rectifies erroneously identified entities.Furthermore,the conditional layer normalization method replaces the simplistic addition between word embeddings and subject embeddings found in the original model.Experimental results demonstrate that the proposed model achieves a 5.73% enhancement in F1 measure on the CMeIE dataset.The ablation study confirms the incremental impact of each module,and these improvements exhibit a cumulative effect.

Key words: Entity relation extraction, CASREL, Medical relation extraction, Deeplearning, Subject recognition

中图分类号: 

  • TP391
[1]WEI Z P,SU J L,WANG Y,et al.A Novel Cascade Binary Tagging Framework for Relational Triple Extraction[C]//Procee-dings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:1475-1488.
[2]ZAN H Y,GUAN T F,ZHANG K L,et al.Review of entity relation extraction for medical texts[J].J.Zhengzhou Univ.(Nat.Sci.Ed),2020,52(4):1-15.
[3]ZHENG S C,WANG F,BAO H Y,et al.Joint Extraction of Entities and RelationsBased on a Novel Tagging Scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1227-1236.
[4]LI H,LIU Y J,XIE Q,et al.Distant Supervision Relation Extraction Model Based on Multi-level Attention Mechanism[J].Computer Science,2019,46(10):252-257.
[5]ZENG X R,ZENG D J,HE S Z,et al.Extracting RelationalFacts by an End-to-End Neural Model with Copy Mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:506-514.
[6]FU T J,LI P H,MA W Y.GraphRel:Modeling Text as Relational Graphs for Joint Entity and Relation Extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:1409-1418.
[7]ZENG X R,HE S S,ZENG D J,et al.Learning the Extraction Order of Multiple Relational Facts in a Sentence with Reinforcement Learning[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:367-377.
[8]ZENG D J,ZHANG R H,LIU Q Y.CopyMTL:Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:9507-9514.
[9]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:4171-4186.
[10]WANG Y C,YU B W,ZHANG Y Y,et al.TPLinker:Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:1572-1582.
[11]MA L B,REN H M,ZHANG X L.Effective Cascade Dual-Decoder Model for Joint Entity and Relation Extraction[DB/OL].(2021-06-27)[2023-08-22].https://arxiv.orgabs/2106.14163.
[12]ZHU X B,ZHOU G,CHEN J,et al.Single-stage Joint Entity Relation Extraction Method Based on Enhanced Sequence Annotation Strategy[J].Computer Science.2023,50(8):184-192.
[13]UZUNER Ö,SOUTH B R,SHEN S Y,et al.2010 i2b2/VA challenge on concepts,assertions,and relations in clinical text[J].Journal of the American Medical Informatics Association,2011,18(5):552-556.
[14]WEI C H,PENG Y F,LEAMAN R,et al.Overview of the BioCreative V Chemical Disease Relation(CDR) Task[C]//Proceeding of the 5th BioCreative Challenage Evaluation Workshop.2015:154-156.
[15]SAHU S K,ANAND A,ORUGANTY K,et al.Relation extraction from clinical texts using domain invariant convolutional neural network[C]//Proceeding of the 15th Workshop on Biomedical Natural Language Processing.2016:206-215.
[16]ZHANG Y J,LIN H F,YANG Z H,et al.A hybrid model based on neural networks for biomedical relation extraction[J].Journal of Biomedical Informatics,2018,81:83-92.
[17]LIU Z J,YANG M,WANG X L,et al.Entity recognition from clinical texts via recurrent neural network[J].BMC Medical Informatics and Decision Making,2017,17(2):53-61.
[18]LUO L,YANG Z H,CAO M Y,et al.A neural network-based joint learning approach for biomedical entity and relation extraction from biomedical literature[J].Journal of Biomedical Informatics,2020,103:103384.
[19]LEE J,YOON W,KIM S,et al.BioBERT:a pre-trained biome-dical language representation model for biomedical text mining[J].Bioinformatics,2020,36(4):1234-1240.
[20]ZHANG S H,U S D,JIA Z,et al.Medical Entity Relation Extraction Based on Deep Network and Self-attention Mechanism[J].Computer Science,2021,48(10):77-84.
[21]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6000-6010.
[22]SANTURKAR S,TSIPRAS D,ILYAS A,et al.How DoesBatch Normalization Help Optimization?[DB/OL].(2019-04-15)[2023-08-22].https://arxiv.org/abs/1805.11604.
[23]SU J L.Conditional text generation Based on Conditional Layer Normalization[EP/OL].(2019-12-14)[2023-08-22].https://spaces.ac.cn/archives/7124.
[24]GAN Z F,ZAN H Y,GUAN T F,et al.Overview of CHIP 2020 Shared Task 2:Entity and Relation Extraction in Chinese Medical Text[J].Journal of Chinese Information Processing,2022,36(6):101-108.
[25]BEKOULIS G,DELEU G,DEMEESTER T,et al.Joint entity recognition and relation ex-traction as a multi-head selection problem[J].Expert Systems with Applications,2018,114:34-45.
[26]YU J T,BOHNET B,POESIO M.Named Entity Recognition as Dependency Parsing[DB/OL].(2020-06-13)[2023-08-22].https://arxiv.org/abs/2005.07150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!