计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400110-6.doi: 10.11896/jsjkx.230400110

• 图像处理&多媒体技术 • 上一篇    下一篇

结合多尺度卷积块与密集卷积块的遥感图像融合

侯林昊, 刘帆   

  1. 太原理工大学大数据学院 山西 晋中 030600
  • 发布日期:2024-06-06
  • 通讯作者: 刘帆(Liufan@tyut.edu.cn)
  • 作者简介:(451704938@qq.com)

Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks

HOU Linhao, LIU Fan   

  1. College of Data Science,Taiyuan University of Technology,Jinzhong,Shanxi 030600,China
  • Published:2024-06-06
  • About author:HOU Linhao,born in 1996,postgra-duate.His main research interests include remote sensing image fusion and deep learning.
    LIU Fan,born in 1982,Ph.D,professor,is a member of CCF(No.49460M).Her main research interests include machine learning and remote sensing image fusion.

摘要: 遥感图像融合的目的在于获得与多光谱图像相同光谱分辨率和与全色图像相同空间分辨率的高分辨率多光谱图像。尽管深度学习在遥感图像融合方面取得了显著的成果,但由于深度模型网络的限制,网络无法充分提取图像中丰富的空间信息,导致融合图像空间信息缺失,融合结果质量低。因此引入了多尺度块,不同尺度的图像特征可以通过不同大小的卷积核学习,从而增加提取特征的丰富性。随后引入了密集卷积块,通过密集连接来达到特征重用的目的,在网络较深时减少了浅层特征信息的丢失。在特征融合阶段,所提方法将网络不同层次的特征图作为特征融合层的输入,提高融合图像的质量。在GE1数据集以及QB数据集上与6种融合算法进行对比实验,实验结果表明所提方法的融合图像更好地保留了空间信息与光谱信息,在主观和客观评价上均优于对比方法。

关键词: 遥感图像融合, 深度学习, 多光谱图像, 多尺度卷积块, 密集连接

Abstract: The aim of remote sensing image fusion is to obtain high-resolution multispectral images with the same spectral resolution as multispectral images and the same spatial resolution as panchromatic images.Although deep learning has achieved remarkable results in remote sensing image fusion,the network cannot fully extract the rich spatial information in the image due to the limitation of the deep model network,which leads to the lack of spatial information in the fused image and low quality of the fusion result.Therefore,this paper introduces multi-scale blocks,where image features at different scales can be learned by convolutional kernels of different sizes,thus increasing the richness of the extracted features.Dense convolutional blocks are then introduced to achieve feature reuse through dense connections,reducing the loss of shallow feature information when the network is deep.In the feature fusion stage,the proposed method uses feature maps from different levels of the network as input to the feature fusion layer to improve the quality of the fused images.Comparison experiments are performed with six fusion algorithms on GE1 and QB datasets,and the experimental results show that the fused images of the proposed method retain spatial and spectral information better,and outperform the comparison methods in both subjective and objective evaluations.

Key words: Remote sensing image fusion, Deep learning, Multispectral images, Multiscale convolution block, Dense connection

中图分类号: 

  • TP391
[1]VIVONE G,DALLA MURA M,GARZELLI A,et al.A new benchmark based on recent advances in multispectral panshar-pening:Revisiting pansharpening with classical and emerging pansharpening methods[J].IEEE Geoscience and Remote Sensing Magazine,2020,9(1):53-81.
[2]LEUNG Y,LIU J,ZHANG J.An Improved Adaptive Intensity-Hue-Saturation Method for the Fusion of Remote Sensing Images[J].IEEE Geoscience and Remote Sensing Letters,2014,11(5):985-989.
[3]SHAH V P,YOUNAN N H,KING R L.An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(5):1323-1335.
[4]LABEN C A,BROWER B V.Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening:US Patent 6,011,875,4[P].2000-01.
[5]CHOI J,YU K,KIM Y.A new adaptive component-sub-stitution-based satellite image fusion by using partial replacement[J].IEEE Transaction on Geoscience and Remote Sensing,2011,49(1):295-309.
[6]KIM Y,LEE C,HAN D,et al.Improved Additive-WaveletImage Fusion[C]//IEEE Geoscience and Remote Sensing Letters.2011:263-267.
[7]LI S T,KWOK JAMES T,WANG Y.Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images[J].Information Fusion,2002,3(1):17-23.
[8]ZHANG J,CHEN H T,LIU F.Remote Sensing Image Fusion Based on Multivariate Empirical Mode Decomposition and Weighted Least Squares Filter[J].Acta Photonica Sinica,2019,48(5):510003.
[9]MASI G,COZZOLINO D,VERDOLIVA L,et al.Pansharpening by convolutional neural networks[J].Remote Sensing,2016,8(7):594.
[10]YUAN Q,WEI Y,MENG X,et al.A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening[C]//IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.2018:978-989.
[11]SHAO Z,CAI J.Remote Sensing Image Fusion With DeepConvolutional Neural Network[C]//IEEE Journal of Selected Topi-cs in Applied Earth Observations and Remote Sensing.2018:1656-1669.
[12]LI M,LIU F,LI J Z.Combining Convolutional Attention Module and Convolutional Auto-encoder for Detail Injection Remote Sensing Image Fusion[J].Acta Photonica Sinica,2022,51(6):0610005.
[13]LI J,FANG F,LI J,et al.MDCN:Multi-Scale Dense Cross Network for Image Super-Resolution[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(7):2547-2561.
[14]CHANG C Y,CHIEN S Y.Multi-scale Dense Network for Single-image Super-resolution[C]//2019 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2019).IEEE,2019.
[15]WALD L,RANCHIN T,MANGOLINI M.Fusion of satelliteimages of different spatial resolutions:Assessing the quality of resulting images[J].Photogrammetric Engineering and Remote Sensing,1997,63:691-699.
[16]GARZELLI A,ENCINI F,CAPOBIANCO L.Optimal MMSE Pan Sharpening of Very High Resolution Multispectral Images[C]//IEEE Transactions on Geoscience and Remote Sensing.2008:228-236.
[17]AIAZZI B,BARONTI S,SELVA M.Improving component sub-stitution pansharpening through multivariate regression of MS+Pan data[J].IEEE Trans.Geosci.Remote Sens.,2007,45(10):3230-3239.
[18]VIVONE G,RESTAINO R,DALLA MURA M,et al.Contrast and error-based fusion schemes for multispectral image pansharpening[J].IEEE Geoscience and Remote Sensing Letters,2013,11(5):930-934.-
[19]JIN Z,ZHUO Y,ZHANG T,et al.Remote Sensing Pansharpening by Full-Depth Feature Fusion[J].Remote Sensing,2022,14(3).
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!