计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400110-6.doi: 10.11896/jsjkx.230400110
侯林昊, 刘帆
HOU Linhao, LIU Fan
摘要: 遥感图像融合的目的在于获得与多光谱图像相同光谱分辨率和与全色图像相同空间分辨率的高分辨率多光谱图像。尽管深度学习在遥感图像融合方面取得了显著的成果,但由于深度模型网络的限制,网络无法充分提取图像中丰富的空间信息,导致融合图像空间信息缺失,融合结果质量低。因此引入了多尺度块,不同尺度的图像特征可以通过不同大小的卷积核学习,从而增加提取特征的丰富性。随后引入了密集卷积块,通过密集连接来达到特征重用的目的,在网络较深时减少了浅层特征信息的丢失。在特征融合阶段,所提方法将网络不同层次的特征图作为特征融合层的输入,提高融合图像的质量。在GE1数据集以及QB数据集上与6种融合算法进行对比实验,实验结果表明所提方法的融合图像更好地保留了空间信息与光谱信息,在主观和客观评价上均优于对比方法。
中图分类号:
[1]VIVONE G,DALLA MURA M,GARZELLI A,et al.A new benchmark based on recent advances in multispectral panshar-pening:Revisiting pansharpening with classical and emerging pansharpening methods[J].IEEE Geoscience and Remote Sensing Magazine,2020,9(1):53-81. [2]LEUNG Y,LIU J,ZHANG J.An Improved Adaptive Intensity-Hue-Saturation Method for the Fusion of Remote Sensing Images[J].IEEE Geoscience and Remote Sensing Letters,2014,11(5):985-989. [3]SHAH V P,YOUNAN N H,KING R L.An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(5):1323-1335. [4]LABEN C A,BROWER B V.Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening:US Patent 6,011,875,4[P].2000-01. [5]CHOI J,YU K,KIM Y.A new adaptive component-sub-stitution-based satellite image fusion by using partial replacement[J].IEEE Transaction on Geoscience and Remote Sensing,2011,49(1):295-309. [6]KIM Y,LEE C,HAN D,et al.Improved Additive-WaveletImage Fusion[C]//IEEE Geoscience and Remote Sensing Letters.2011:263-267. [7]LI S T,KWOK JAMES T,WANG Y.Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images[J].Information Fusion,2002,3(1):17-23. [8]ZHANG J,CHEN H T,LIU F.Remote Sensing Image Fusion Based on Multivariate Empirical Mode Decomposition and Weighted Least Squares Filter[J].Acta Photonica Sinica,2019,48(5):510003. [9]MASI G,COZZOLINO D,VERDOLIVA L,et al.Pansharpening by convolutional neural networks[J].Remote Sensing,2016,8(7):594. [10]YUAN Q,WEI Y,MENG X,et al.A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening[C]//IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.2018:978-989. [11]SHAO Z,CAI J.Remote Sensing Image Fusion With DeepConvolutional Neural Network[C]//IEEE Journal of Selected Topi-cs in Applied Earth Observations and Remote Sensing.2018:1656-1669. [12]LI M,LIU F,LI J Z.Combining Convolutional Attention Module and Convolutional Auto-encoder for Detail Injection Remote Sensing Image Fusion[J].Acta Photonica Sinica,2022,51(6):0610005. [13]LI J,FANG F,LI J,et al.MDCN:Multi-Scale Dense Cross Network for Image Super-Resolution[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(7):2547-2561. [14]CHANG C Y,CHIEN S Y.Multi-scale Dense Network for Single-image Super-resolution[C]//2019 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2019).IEEE,2019. [15]WALD L,RANCHIN T,MANGOLINI M.Fusion of satelliteimages of different spatial resolutions:Assessing the quality of resulting images[J].Photogrammetric Engineering and Remote Sensing,1997,63:691-699. [16]GARZELLI A,ENCINI F,CAPOBIANCO L.Optimal MMSE Pan Sharpening of Very High Resolution Multispectral Images[C]//IEEE Transactions on Geoscience and Remote Sensing.2008:228-236. [17]AIAZZI B,BARONTI S,SELVA M.Improving component sub-stitution pansharpening through multivariate regression of MS+Pan data[J].IEEE Trans.Geosci.Remote Sens.,2007,45(10):3230-3239. [18]VIVONE G,RESTAINO R,DALLA MURA M,et al.Contrast and error-based fusion schemes for multispectral image pansharpening[J].IEEE Geoscience and Remote Sensing Letters,2013,11(5):930-934.- [19]JIN Z,ZHUO Y,ZHANG T,et al.Remote Sensing Pansharpening by Full-Depth Feature Fusion[J].Remote Sensing,2022,14(3). |
|