计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230500004-6.doi: 10.11896/jsjkx.230500004

• 图像处理&多媒体技术 • 上一篇    下一篇

多重注意力引导的超声乳腺癌肿瘤图像分割

郭洪洋1, 程前2, 康晓东1, 杨靖怡1, 杨舒琪1, 李芳1,3, 张蕊1   

  1. 1 天津医科大学医学影像学院 天津 300202
    2 重庆大学附属黔江医院 重庆 409000
    3 北京市化工职业病防治院 北京 100093
  • 发布日期:2024-06-06
  • 通讯作者: 康晓东(tmughywl@163.com)
  • 作者简介:(tmughywl@163.com)
  • 基金资助:
    京津冀协同创新项目(17YEXTZC00020)

Multiple Attention-guided Mechanisms for Ultrasound Breast Cancer Tumor Image Segmentation

GUO Hongyang1, CHENG Qian2, KANG Xiaodong1, YANG Jingyi1, YANG Shuqi1, LI Fang1,3, ZHANG Rui1   

  1. 1 School of Medical Image,Tianjin Medical University,Tianjin 300202,China
    2 Chongqing University Qianjiang Hospital,Chongqing 409000,China
    3 Beijing Chemical Occupational Disease Control Hospital,Beijing 100093,China
  • Published:2024-06-06
  • About author:GUO Hongyang,born in 2002,undergraduates.His main research interests include medical imaging diagnosis and so on.
    KANG Xiaodong,born in 1964,Ph.D,professor.His main research interests include medical image processing and medical information system integration.
  • Supported by:
    Beijing-Tianjin-Hebei Collaborative Innovation Project(17YEXTZC00020).

摘要: 传统基于U-Net超声乳腺图像分割任务中存在预测尺度单一和信息丢失等问题。针对存在的问题,提出一种由多重注意力引导机制的U-Net超声乳腺肿瘤图像分割。首先,在U-Net的编码结构中,引入多个SE通道注意力,对输入的乳腺肿瘤图像进行多层级的语义信息提取,引导编码器聚焦乳腺肿瘤特征,减少冗余背景信息带来的干扰;其次,通过设计特征融合处理模块,对编码器传来的特征图进行复杂语义特征的融合处理;最后,在解码器部分,加入金字塔结构捕获全局空间信息,提高模型对肿瘤图像的多尺度特征提取能力,以提高整体网络的表达能力和分割性能。在乳腺肿瘤图像数据集上对该方法进行了仿真实验,结果表明,与其他U-Net改进策略相比,该方法具有更强的准确率和鲁棒性。

关键词: 多重注意力引导, 乳腺, U-Net, 超声, 图像分割

Abstract: There are some problems such as single prediction scale and information loss in traditional U-Net ultrasound breast image segmentation tasks.To solve these problems,a multi-attention-guided U-Net ultrasound image segmentation method for breast tumors is proposed.Firstly,multiple SEattention module are introduced into the encoding structure of U-Net to extract multi-level semantic information from the input breast tumor images,which guides the encoder to focus on the features of breast tumor and reduces the interference caused by redundant background information.Secondly,by designing a feature fusion processing module,the complex semantic feature fusion processing is carried out on the feature graph from the encoder.Finally,in the decoder part,the pyramid structure is added to capture global spatial information to improve the multi-scale feature extraction ability of the model for tumor images,so as to improve the expression ability and segmentation performance of the whole network.The proposed method is simulated on breast tumor image data set,and the results show that compared with other U-Net improved strategies,the proposed method has better accuracy and robustness.

Key words: Multiple attention guidance, Mammary gland, U-Net, Ultrasound, Image segmentation

中图分类号: 

  • TP391
[1]REBECCAR L,MILLER K D,JEMAL A.Cancer statistics,2019[J].CA:A Cancer Journal for Clinicians,20222,6(1):7-34.
[2]XIAO D,LI W B,ZHANG H M.Tumor Segmentation in Breast Ultrasound Images by Fusing Efficient-Net and U-Net[J].Chinese Medical Equipment Journal,2022,43(11):8-13.
[3]KANG X D.Medical Image Processing.[M].Beijing:People’s Health Publishing House,2009.
[4]XU M L,LI F,ZENG S,et al.Correlation Between the Characteristics of Ultrasound Gray Histogram and HER-2 Expression in Invasive Ductal Carcinoma of Breast[J].Chinese Journal of Medical Imaging,2022,30(12):1224-1229.
[5]GOMEZ W,LEJIA L A.Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation[J].Medical Physics,2010,37(1):82-95.
[6]HUANG Y L,CHEN D R.Watershed segmentation for breast tumor in 2-D sonography[J].Ultrasound in Medicine & Biology,2004,30(5):625-632.
[7]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
[8]ZHAO H S,SHI J P,QI X J,et al.Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.2017:6230-6239.
[9]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Seg-Net:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[10]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241.
[11]CHEN L C,PAPANDREOU G,KKINOS I,et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[J].Computer Science,2014(4):357-361.
[12]CHEN L C,PAPANDREOU G,KKINOS I,et al.Deep-Lab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848.
[13]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017.
[14]ZHOU Y W,LIU Z Q,WANG Q F,et al.Breast Mass Image Segmentation Algorithm Based on Improved Residual U-Net[J].Journal of Southwest University,2021,36(2):68-74.
[15]ZHAO J Y,QUE D S,TAN J Q,et al.Automated breast lesion segmentation from ultrasound images based on PPU-Net[C]//Proceedings of the 2019 International Conference on Medical Imaging Physics and Engineering.Piscataway:IEEE,2019:19725937.
[16]ALEKSANDAR V,MIN X,PHOEBE E F.Attention-enriched deep learning model for breast tumor segmentation in ultrasound images[J].Ultrasound in Medicine and Biology,2020,46(10):2819-2833.
[17]CHEN X,LIU Q,DENG X B,et al.Enhanced Network for Ultrasound Breast Tumor Segmentation Based on U-Net[J].Computer Engineering and Applications,2022,58(22):219-228.
[18]CHEN X,CAI Y J,RAN W B,et al.SECU-Net:A skin disease images segmentation network combining SE with CRF[J].Intelligent Computer And Applications,2022,12(11):71-77,86.
[19]CHANG H.Continuous blood pressure prediction based on deep learning[D].Lanzhou:Lanzhou University of Technology,2020.
[20]WANG X,YU M,REN H E.Remote sensing image semantic segmentation combining UNET and FPN[J].Chinese Journal of Liquid Crystals and Displays,2021,36(3):475-483.
[21]ZHANG F C,ZHONG G Q,MAO Y X.Neural Architecture Search for Light-weight Medical Image Segmentation Network[J].Computer Science,2022,49(10):183-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!