计算机科学 ›› 2023, Vol. 50 ›› Issue (3): 199-207.doi: 10.11896/jsjkx.211200294

• 计算机图形学&多媒体 • 上一篇    下一篇

基于特征融合的边缘引导乳腺超声图像分割方法

白雪飞1, 马亚楠1, 王文剑1,2   

  1. 1 山西大学计算机与信息技术学院 太原 030006
    2 计算智能与中文信息处理教育部重点实验室(山西大学) 太原 030006
  • 收稿日期:2021-12-28 修回日期:2022-08-15 出版日期:2023-03-15 发布日期:2023-03-15
  • 通讯作者: 王文剑(wjwang@sxu.edu.cn)
  • 作者简介:((baixuefei@sxu.edu.cn)
  • 基金资助:
    国家自然科学基金(61703252,U21A20513,62076154,62276161),山西省重点研发项目(202102150401013);山西省研究生教育创新项目(2022Y145)

Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion

BAI Xuefei1, MA Yanan1, WANG Wenjian1,2   

  1. 1 School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China
    2 Key Laboratory of Computational Intelligence and Chinese Information Processing,Ministry of Education(Shanxi University),Taiyuan 030006,China
  • Received:2021-12-28 Revised:2022-08-15 Online:2023-03-15 Published:2023-03-15
  • About author:BAI Xuefei,born in 1980,Ph.D,asso-ciate professor,is a member of China Computer Federation.Her main research interests include image proces-sing and machine learning.
    WANG Wenjian,born in 1968,Ph.D,professor,is a member of China Computer Federation.Her main research interests include image processing,machine learning and computing intelligence.
  • Supported by:
    National Natural Science Foundation of China(61703252,U21A20513,62076154,62276161),Key Research and Development Program of Shanxi Province(202102150401013) and Graduate Education Innovation Project of Shanxi Province(2022Y145).

摘要: 针对乳腺超声图像边缘模糊、斑点噪声多、对比度低等问题,提出了一种融合多特征的边缘引导多尺度选择性核U-Net(Edge-guided Multi-scale Selective Kernel U-Net,EMSK U-Net)方法。EMSK U-Net采用基于U-Net的对称编解码结构可以适应小数据集医学图像分割的特点,将扩张卷积与传统卷积构成选择性核模块作用于编码路径,并提取下采样过程中的选择性核特征进行边缘检测任务,在丰富图像空间信息的同时细化边缘信息,有效缓解斑点噪声和边缘模糊的问题,在一定程度上可以提升小目标的检测精度。然后在解码路径通过多尺度特征加权聚合获取丰富的深层语义信息,多种信息之间相互补充,从而提升网络的分割性能。在3个公开的乳腺超声图像数据集上的实验结果表明,与其他分割方法相比,EMSK U-Net算法各项指标表现良好,分割性能有显著提升。

关键词: 乳腺超声图像分割, 特征融合, 边缘检测, 多尺度特征, 深度学习, U-Net

Abstract: Due to the problems of blurred edges,excessive speckle noise,and low contrast in breast ultrasound images,an edge-guided multi-scale selective kernel U-Net(EMSK U-Net) method that fuses multiple features is proposed.The U-Net network has a symmetrical encoder-decoder structure,which can achieve better segmentation results on medical images with a small amount of data.EMSK U-Net adopts a network structure based on it,which combines dilated convolution with traditional convolution to form a selective kernel module,and applies it to the encoding path of the symmetric structure.Meanwhile,in the encoding part,EMSK U-Net performs the task of edge detection by extracting selective kernel features during down sampling.Through these methods,the spatial information of the image is enriched and the edge information of the image is refined,which effectively alleviates the difficult problem of segmentation caused by speckle noise and edge blur in breast ultrasound images,and the detection accuracy of small targets will also be improved to a certain extent.After that,in the decoding path of U-Net,EMSK U-Net obtains rich deep semantic information by building a multi-scale feature weighted aggregation module,realizes more information interaction between deep and shallow layers,and reduces the problem of low contrast.In general,EMSK U-Net jointly guides the segmentation of the network by complementing various information such as encoding part of the spatial information,edge information and decoding part of the depth feature information,so that the segmentation performance has been well improved.Experiments are conducted on three public breast ultrasound image datasets,and the results show that compared with other classical medical image segmentation methods and breast ultrasound segmentation methods,the EMSK U-Net algorithm performs well in various indicators.The performance of breast ultrasound image segmentation task has been significantly improved.

Key words: Breast ultrasound image segmentation, Feature fusion, Edge detection, Multi-scale features, Deep learning, U-Net

中图分类号: 

  • TP391
[1]SIEGEL R L,MILLER K D,FUCHS H E,et al.Cancer statistics,2021 [J].CA:A Cancer Journal for Clinicians,2021,71(1):7-33.
[2]WU G G,ZHOU L Q,XU J W,et al.Artificial intelligence in breast ultrasound [J].World Journal of Radiology,2019,11(2):19-26.
[3]XIAN M,ZHANG Y T,CHENG H D,et al.Automatic breastultrasound image segmentation:a survey [J].Pattern Recognition:the Journal of the Pattern Recognition Society,2018,79:340-355.
[4]YAP M H,PONS G,MARTI J,et al.Automated breast ultrasound lesions detection using convolutional neural networks [J].IEEE Journal of Biomedical and Health Informatics,2018,22(4):1218-1226.
[5]YAP M H,EDIRISINGHE E A,BEZ H E.A novel algorithm for initial lesion detection in ultrasound breast images [J].Journal of Applied Clinical Medical Physics,2008,9(4):181-199.
[6]GOMEZ W,LEJIA L,ALVARENGA A V,et al.Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation [J].Medical Physics,2010,37(1):82-95.
[7]HE T,GUO Y G,XIN C H.Adaptive image segmentationmethod using acm selection system and improved chan-vese model[ J].Journal of Chongqing University of Technology(Natural Science),2020,34(2):165-173.
[8]FENG Y,DONG F L,XIA X L,et al.An adaptive fuzzy c-means method utilizing neighboring information for breast tumor segmentation in ultrasound images [J].Medical Physics,2017,44(7):3752-3760.
[9]GUO Y J,YANG M,HOU Y C.Application of an improved slic algorithm in color image segmentation[ J].Journal of Chongqing University of Technology( Natural Science),2020,34(2):158-164.
[10]DAOUD M I,ATALLAH A A,AWWAD F,et al.Accurate and fully automatic segmentation of breast ultrasound images by combining image boundary and region information[C]//2016 IEEE 13th International Symposium on Biomedical Imaging(ISBI).Piscataway:IEEE,2016:718-721.
[11]QIN H F,LIU X.Finger vein image segmentation based onsparse auto-encoder[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(4):1-8.
[12]YUAN Z M,YUAN H J,YAN Y X,et al.Automatic recognition and classification of field insects based on lightweight deep learning model[J].Journal of Jilin University(Engineering and Technology Edition),2021,51(3):1131-1139.
[13]TAJBAKHSH N,JEYASEELAN L,LI Q,et al.Embracing imperfect datasets:a review of deep learning solutions for medical image segmentation [J].Medical Image Analysis,2020,63:101693.
[14]SHI J,WANG L L,WANG S S,et al.Applications of deeplearning in medical imaging:a survey[J].Journal of Image and Graphics,2020,25(10):1953-1981.
[15]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation [C]//Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015).Cham:Springer,2015:234-241.
[16]OKTAY O,SCHLEMPER J,FOLOGC L L,et al.Attention u-net:learning where to look for the pancreas [J].arXiv:1804.03999,2018.
[17]DONG R S,PAN X Q,LI F Y.Dense u-net-based semantic segmentation of small objects in urban remote sensing images [J].IEEE Access,2019,7:65347-65356.
[18]IBTEHAZ N,RAHMAN M S.MultiResUNet:rethinking the u-net architecture for multimodal biomedical image segmentation [J].Neural Networks,2020,121:74-87.
[19]SHAREEF B,XIAN M,VAKANSKI A.Stan:small tumor-aware network for breast ultrasound image segmentation [C]//IEEE 17th International Symposium on Biomedical Imaging(ISBI).Piscataway:IEEE,2020:1469-1473.
[20]SHAREEF B,VAKANSKI A,XIAN M,et al.ESTAN:en-hanced small tumor-aware network for breast ultrasound image segmentation [J].arXiv:2009.12894,2020.
[21]LI J J.Breast tumor image segmentation based on fuzzy logic attention mechanism u-net [D].Harbin:Harbin Instutite of Technology,2019.
[22]GONG R L,SHI J,WANG J.Hybrid supervised dual-channelfeedback u-net for segmentation of breast ultrasound images [J].Journal of Image and Graphics,2020,25(10):2206-2217.
[23]LI X,WANG W,HU X,et al.Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE,2019:510-519.
[24]HU Y,GUO Y,WANG Y,et al.Automatic tumor segmentationin breast ultrasound images using a dilated fully convolutional network combined with an active contour model [J].Medical Physics,2018,46(1):215-228.
[25]XIE S,TU Z.Holistically-nested edge detection [J].Interna-tional Journal of Computer Vision,2017,125(1/2/3):3-18.
[26]Al-DHABYANI W,GOMAA M,KHALED H,et al.Dataset of breast ultrasound images [J].Data in Brief,2020,28:104863.
[27]HUANG Q,HUANG Y,LUO Y,et al.Segmentation of breast ultrasound image with semantic classification of superpixels [J].Medical Image Analysis,2020,61:101657.
[28]MA J,CHEN J N,NG M,et al.Loss odyssey in medical image segmentation [J].Medical Image Analysis,2021,71:102035.
[29]BERTELS J B,EELBODE T,BERMAN M,et al.Optimizingthe dice score and jaccard index for medical image segmentation:theory and practice[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019(MICCAI 2019).Cham:Springer,2019.
[30]TAQI A M,AWAD A,Al-AZZO F.The impact of multi-optimizers and data augmentation on tensorflow convolutional neural network perfor mance[C]//2018 IEEE Conference on Multimedia Information Processing and Retrieval(MIPR).Piscataway:IEEE,2018:140-145.
[1] 董永峰, 黄港, 薛婉若, 李林昊.
融合IRT的图注意力深度知识追踪模型
Graph Attention Deep Knowledge Tracing Model Integrated with IRT
计算机科学, 2023, 50(3): 173-180. https://doi.org/10.11896/jsjkx.211200134
[2] 华晓凤, 冯娜, 于俊清, 何云峰.
基于规则推理的足球视频任意球射门事件检测
Shooting Event Detection of Free Kick in Soccer Video Based on Rule Reasoning
计算机科学, 2023, 50(3): 181-190. https://doi.org/10.11896/jsjkx.220300062
[3] 梅鹏程, 杨吉斌, 张强, 黄翔.
一种基于三维卷积的声学事件联合估计方法
Sound Event Joint Estimation Method Based on Three-dimension Convolution
计算机科学, 2023, 50(3): 191-198. https://doi.org/10.11896/jsjkx.220500259
[4] 刘航, 普园媛, 吕大华, 赵征鹏, 徐丹, 钱文华.
极化自注意力约束颜色溢出的图像自动上色
Polarized Self-attention Constrains Color Overflow in Automatic Coloring of Image
计算机科学, 2023, 50(3): 208-215. https://doi.org/10.11896/jsjkx.220100149
[5] 谢秦秦, 何朗, 徐汝利.
基于多特征融合的油画艺术风格分类
Classification of Oil Painting Art Style Based on Multi-feature Fusion
计算机科学, 2023, 50(3): 223-230. https://doi.org/10.11896/jsjkx.211200110
[6] 陈亮, 王璐, 李生春, 刘昌宏.
基于深度学习的可视化仪表板生成技术研究
Study on Visual Dashboard Generation Technology Based on Deep Learning
计算机科学, 2023, 50(3): 238-245. https://doi.org/10.11896/jsjkx.230100064
[7] 张译, 吴秦.
特征增强损失与前景注意力人群计数网络
Crowd Counting Network Based on Feature Enhancement Loss and Foreground Attention
计算机科学, 2023, 50(3): 246-253. https://doi.org/10.11896/jsjkx.220100219
[8] 应宗浩, 吴槟.
深度学习模型的后门攻击研究综述
Backdoor Attack on Deep Learning Models:A Survey
计算机科学, 2023, 50(3): 333-350. https://doi.org/10.11896/jsjkx.220600031
[9] 梁佳利, 华保健, 苏少博.
融合循环划分的张量指令生成优化
Tensor Instruction Generation Optimization Fusing with Loop Partitioning
计算机科学, 2023, 50(2): 374-383. https://doi.org/10.11896/jsjkx.220300147
[10] 刘泽京, 邬楠, 黄抚群, 宋友.
基于知识图谱与协同过滤混合策略的在线编程评测系统题目推荐模型
Hybrid Programming Task Recommendation Model Based on Knowledge Graph and Collaborative Filtering for Online Judge
计算机科学, 2023, 50(2): 106-114. https://doi.org/10.11896/jsjkx.211200105
[11] 邹芸竹, 杜圣东, 滕飞, 李天瑞.
一种基于多模态深度特征融合的视觉问答模型
Visual Question Answering Model Based on Multi-modal Deep Feature Fusion
计算机科学, 2023, 50(2): 123-129. https://doi.org/10.11896/jsjkx.211200303
[12] 王鹏宇, 台文鑫, 刘芳, 钟婷, 罗绪成, 周帆.
基于数据增强的自监督飞行航迹预测
Self-supervised Flight Trajectory Prediction Based on Data Augmentation
计算机科学, 2023, 50(2): 130-137. https://doi.org/10.11896/jsjkx.211200016
[13] 郭楠, 李婧源, 任曦.
基于深度学习的刚体位姿估计方法综述
Survey of Rigid Object Pose Estimation Algorithms Based on Deep Learning
计算机科学, 2023, 50(2): 178-189. https://doi.org/10.11896/jsjkx.211200164
[14] 李俊林, 欧阳智, 杜逆索.
基于改进区域候选网络的场景文本检测
Scene Text Detection with Improved Region Proposal Network
计算机科学, 2023, 50(2): 201-208. https://doi.org/10.11896/jsjkx.211000191
[15] 华杰, 刘学亮, 赵烨.
基于特征融合的小样本目标检测
Few-shot Object Detection Based on Feature Fusion
计算机科学, 2023, 50(2): 209-213. https://doi.org/10.11896/jsjkx.220500153
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!