计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700125-5.doi: 10.11896/jsjkx.230700125
黄远航1,2, 边山1,2,3, 王春桃1,2
HUANG Yuanhang1,2, BIAN Shan1,2,3, WANG Chuntao1,2
摘要: 在多媒体取证中,高通滤波器是卷积神经网络常用的预处理层之一,用于抑制图像内容的影响,只强调高频特征。但与此同时,其他一些包含取证痕迹的有用信息也将被不加区别地剔除。为了解决这一问题,文中提出了一个简单而高效的高斯增强模块(Gaussian Enhancement Module,GEM)来提取“扩展的”高频特征,即在维持原有特征强度的基础上增强高频细节信息。GEM由两个连续的一维低通高斯滤波器组成,以获得一个模糊版本的特征图,并进一步得到相应的扩展高频残差。通过以高频残差作为空间掩膜,它可以自适应地强化脆弱和细微的低级取证特征,并防止在特征传递过程中出现衰减现象。在相机模型辨别数据集上进行实验,通过将该模块插入多个主流骨干网络,GEM仅仅带来非常轻微的模型复杂度的增加,网络性能和鲁棒性却显著提高,表明该模块支持“即插即用”,与特定的网络架构无关。
中图分类号:
[1]FILLER T,FRIDRICH J,GOLJAN M.Using sensor patternnoise for camera model identification[C]//2008 15th IEEE International Conference on Image Processing.IEEE,2008:1296-1299. [2]SAN CHOI K,LAM E Y,WONG K K Y.Automatic source camera identification using the intrinsic lens radial distortion[J].Optics Express,2006,14(24):11551-11565. [3]MILANI S,BESTAGINI P,TAGLIASACCHIM,et al.Demo-saicing strategy identification via eigenalgorithms[C]//2014 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2014:2659-2663. [4]ALLES E J,GERADTS Z J M H,VEENMANC J.Source ca-mera identification for low resolution heavily compressed images[C]//2008 International Conference on Computational Sciences and Its Applications.IEEE,2008:557-567. [5]TUAMA A,COMBY F,CHAUMONTM.Camera model identification with the use of deep convolutional neural networks[C]//2016 IEEE International Workshop on Information Forensics and Security(WIFS).IEEE,2016:1-6. [6]YAO H,QIAO T,XU M,et al.Robust multi-classifier for ca-mera model identification based on convolution neural network[J].IEEE Access,2018,6:24973-24982. [7]BAYAR B,STAMM M C.Augmented convolutional featuremaps for robust cnn-based camera model identification[C]//2017 IEEE International Conference on Image Processing(ICIP).IEEE,2017:4098-4102. [8]QIAN Y,DONG J,WANG W,et al.Deep learning for stegana-lysis via convolutional neural networks[C]//Media Watermar-king,Security,and Forensics 2015.SPIE,2015,9409:171-180. [9]GLOE T,BÖHME R.The ‘Dresden Image Database’ forbenchmarking digital image forensics[C]//Proceedings of the 2010 ACM Symposium on Applied Computing.2010:1584-1590. [10]BAYAR B,STAMM M C.Constrained convolutional neural networks:A new approach towards general purpose image manipulation detection[J].IEEE Transactions on Information Forensics and Security,2018,13(11):2691-2706. [11]BAYAR B,STAMM M C.A deep learning approach to universal image manipulation detection using a new convolutional layer[C]//Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security.2016:5-10. [12]CHEN Y,HUANG Y,DING X.Camera model identificationwith residual neural network[C]//2017 IEEE International Conference on Image Processing(ICIP).IEEE,2017:4337-4341. [13]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [14]DING X,CHEN Y,TANG Z,et al.Camera identification based on domain knowledge-driven deep multi-task learning[J].IEEE Access,2019,7:25878-25890. [15]KUZIN A,FATTAKHOV A,KIBARDIN I,et al.Camera model identification using convolutional neural networks[C]//2018 IEEE International Conference on Big Data(Big Data).IEEE,2018:3107-3110. [16]RAFI A M,KAMAL U,HOQUE R,et al.Application ofDenseNet in Camera Model Identification and Post-processing Detection[C]//CVPR Workshops.2019:19-28. [17]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [18]FERREIRA A,CHEN H,LI B,et al.An inception-based data-driven ensemble approach to camera model identification[C]//2018 IEEE International Workshop on Information Forensics and Security(WIFS).IEEE,2018:1-7. [19]YANG P,NI R,ZHAO Y.Recapture image forensics based on Laplacian convolutional neural networks[C]//Digital Forensics and Watermarking:15th International Workshop(IWDW 2016).Revised Selected Papers 15.Springer International Publishing,2017:119-128. [20]LUO Y,ZHANG Y,YAN J,et al.Generalizing face forgery detection with high-frequency features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:16317-16326. [21]ZHOU P,HAN X,MORARIU V V I,et al.Learning rich features for image manipulation detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1053-1061. [22]KAREN S,ZISSERMAN A.Very Deep Convolutional Net-works for Large-Scale Image Recognition[J].arXiv:1409.1556,2014. [23]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinkingthe inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [24]BAYAR B,STAMM M C.Design principles of convolutionalneural networks for multimedia forensics[J].Electronic Imaging,2017,29:77-86. [25]CHEN X,DONG C,JI J,et al.Image manipulation detection by multi-view multi-scale supervision[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:14185-14193. [26]DONG C,CHEN X,HU R,et al.Mvss-net:Multi-view multi-scale supervised networks for image manipulation detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(3):3539-3553. [27]HU X,ZHANG Z,JIANG Z,et al.SPAN:Spatial pyramid attention network for image manipulation localization[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,Part XXI 16.Springer International Publishing,2020:312-328. [28]WU Y,ABDALMAGEED W,NATARAJAN P.Mantra-net:Manipulation tracing network for detection and localization of image forgeries with anomalous features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9543-9552. [29]HUANG Y,BIAN S,LI H,et al.DS-UNet:A dual streamsUNet for refined image forgery localization[J].Information Sciences,2022,610:73-89. [30]SHULLANI D,FONTANI M,IULIANI M,et al.Vision:a vi-deo and image dataset for source identification[J].EURASIP Journal on Information Security,2017,2017(1):1-16. [31]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2017:618-626. |
|