计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700166-7.doi: 10.11896/jsjkx.230700166

• 图像处理&多媒体技术 • 上一篇    下一篇

基于改进FCOS的遥感图像舰船目标检测

陈天鹏, 胡建文   

  1. 长沙理工大学电气与信息工程学院 长沙 410114
  • 发布日期:2024-06-06
  • 通讯作者: 胡建文(117780631@qq.com)
  • 作者简介:(1183108098@qq.com)
  • 基金资助:
    国家自然科学基金面上项目(62271087);湖南省自然科学基金(2021JJ40609);湖南省教育厅科研项目(21B0330);长沙市自然科学基金(kq2208403)

Ships Detection in Remote Sensing Images Based on Improved FCOS

CHEN Tianpeng, HU Jianwen   

  1. School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114,China
  • Published:2024-06-06
  • About author:CHEN Tianpeng,born in 1996,postgraduate.His main research interests include deep learning and object detection in remote sensing images.
    HU Jianwen,born in 1985,Ph.D,postgraduate supervisor.His main research interests include artificial intelligence, computer vision and machine learning.
  • Supported by:
    National Natural Science Foundation of China(62271087),Natural Science Foundation of Hunan Province,China(2021JJ40609),Research Project of Hunan Provincial Department of Education(21B0330)and Natural Science Foundation of Changsha(kq2208403).

摘要: 由于遥感图像中舰船目标方向任意,基于深度学习的通用目标检测算法采用水平框,在检测舰船时易框选大量背景,检测效果欠佳。文中提出一种改进全卷积一阶段目标检测网络(FCOS)的遥感图像舰船目标检测算法,以FCOS为基线,在检测头部分增加一条偏移回归分支,通过偏移水平框的上边中点和右边中点,产生旋转框。舰船目标通常具有较大的长宽比,预测框与真实框之间的角度偏差对交并比的影响较大,进而影响模型的检测精度。针对该问题,在计算偏移损失时引入与舰船目标长宽比有关的加权因子,使得具有较大长宽比的目标获得较大的偏移损失。在HRSC2016数据集上的实验结果表明,所提算法的平均精确度达到89.00%,检测速度达到19.8FPS,相比同类型的无锚框算法,其在检测速度和检测精度上均表现优秀。

关键词: 遥感图像, 舰船目标检测, FCOS, 无锚框算法, 偏移分支

Abstract: Ships in remote sensing images are arranged in arbitrary directions.The general target detection algorithm based on deep learning use horizontal bounding box to locate object,which will select a large number of backgrounds when detecting ships.The ships detection performance based on general object detection method is not good.An improved ships detection algorithm based on fully convolutional one-stage(FCOS) object detection network is proposed.Taking FCOS as the baseline,an offset regression branch is added to detection head,and a rotating bounding box is generated by shifting the upper midpoint and the right midpoint of the horizontal bounding box.The ships usually have high aspect ratio,and the angle deviation between the predicted bounding box and the real bounding box has a great influence on the intersection over union(IoU),which damages the detection accuracy of the model.In order to solve this problem,a weighting factor related to the aspect ratio of ships is introduced to calculate the offset loss,so that the target with a large aspect ratio can obtain relatively large offset loss.The proposed method and several mainstream rotating target detection algorithms are tested on HRSC2016 dataset.The results show that the average accuracy of the proposed method is 89.00% and the detection speed is 19.8FPS.Compared with the same type of algorithms without anchor,the proposed method has superior detection speed and accuracy.

Key words: Remote sensing image, Ships detection, FCOS, Anchor-free algorithm, Offset branch

中图分类号: 

  • TP391
[1]ZHU Y,FANG G S,ZHENG B B,et al.Research on detection method of refined rotated boxes in remote sensing[J].Acta Automatica Sinica,2023,49(2):415-424.
[2]DING J,XUE N,XIA G S,et al.Object detection in aerial images:A large-scale benchmark and challenges[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(11):7778-7796.
[3]ZHANG Z,YI H H,ZHENG J.Focusing on small objects detector in aerial images[J].Acta Electronica Sinica,2023,51:994.
[4]YANG X,SUN H,FU K,et al.Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J].Remote Sensing,2018,10(1):132.
[5]SONG Z N,LI S,YANG J M,XU C.Remote sensing ship target detection based on feature and region localization enhancement[J/OL].Computer Engineering,2023,49(8):257-264.
[6]FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3146-3154.
[7]ZHOU G Q,HUANG L,SUN Q.Fine-grained detection method for remote sensing ship targets with improved Oriented R-CNN[J].Computer Engineering and Applications,2022,44(6):1823-1832.
[8]ZHANG T,YANG X G,LU X Q,et al.Ship detection in remote sensing image based on dense RFB and LSTM[J].National Remote Sensing Bulletin,2022,26(9):1859-1871.
[9]JIAO J F,JING W,XIONG X.SAR images nearshore ship detection based on RetinaNet algorithm with rotated Rectangular box[J].Journal of Geomatics Science and Technology,2020,37(6):603-609.
[10]ZHAO Y,ZHAO L,XIONG B,et al.Attention receptive pyramid network for ship detection in SAR images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:2738-2756.
[11]SHAO Z K,ZHANG X L,ZHANG T W,et al.A SAR ship detection method based on adaptive anchor and scale enhancement[J].Systems Engineering and Electronics,2024,46(4):1204-1211.
[12]WANG H Y,WANG C P,FU Q,et al.Ship detection based on lightweight optical remote sensing images for embedded platform[J].Acta Optica Sinica,2023,43(12):121-134.
[13]BUKHSH Z A,JANSEN N,SAEED A.Damage detection using in-domain and cross-domain transfer learning[J].Neural Computing and Applications,2021,33(24):16921-16936.
[14]LIU X B,XIAO X,WANG L,et al.Anchor-free based object detection methods and its application progress in complex scenes[J].Acta Automatica Sinica,2022,48(x):1-23.
[15]TIAN Z,SHEN C,CHEN H,et al.Fcos:Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9627-9636.
[16]LIU S,ZHANG L,LU H,et al.Center-boundary dual attention for oriented object detection in remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-14.
[17]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[18]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125.
[19]YU J,JIANG Y,WANG Z,et al.Unitbox:An advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia.2016:516-520.
[20]REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:658-666.
[21]ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:Fasterand better learning for bounding box regression[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020,34(7):12993-13000.
[22]NEUBECK A,VAN GOOL L.Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition(ICPR’06).IEEE,2006,3:850-855.
[23]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988.
[24]GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448.
[25]LIU Z,YUAN L,WENG L,et al.A high resolution optical sa-tellite image dataset for ship recognition and some new baselines[C]//ICPRAM.2017:324-331.
[26]LI W,CHEN Y,HU K,et al.Oriented reppoints for aerial object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:1829-1838.
[27]ZHOU Y,YANG X,ZHANG G,et al.Mmrotate:A rotated object detection benchmark using pytorch[C]//Proceedings of the 30th ACM International Conference on Multimedia.2022:7331-7334.
[28]GAO L,GAO H,WANG Y,et al.Center-ness and repulsion:Constraints to improve remote sensing object detection via reppoints[J].Remote Sensing,2023,15(6):1479.
[29]GUO Z,LIU C,ZHANG X,et al.Beyond bounding-box:Con-vex-hull feature adaptation for oriented and densely packed object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:8792-8801.
[30]CHEN K,WANG J,PANG J,et al.MMDetection:Open mmlab detection toolbox and benchmark[J].arXiv:1906.07155,2019.
[31]YANG X,YAN J.On the arbitrary-oriented object detection:Classification based approaches revisited[J].International Journal of Computer Vision,2022,130(5):1340-1365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!