计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400073-7.doi: 10.11896/jsjkx.230400073
张杰1, 卢淼鑫1, 李嘉康2, 徐大勇2, 黄雯潇1, 史小平3
ZHANG Jie1, LU Miaoxin1, LI Jiakang2, XU Dayong2, HUANG Wenxiao1, SHI Xiaoping3
摘要: 在高噪声图像去噪中,传统卷积自编码器难以挖掘有效的深度特征信息,进而影响了图像的重建质量。为了提高高噪声图像的重建质量,提出了一种残差密集卷积自编码器网络模型。该模型首先使用卷积操作代替池化操作以提高高噪声图像的表征能力;同时,在编码和解码阶段设计三级密集残差网络结构,实现图像特征的有效挖掘;最后,设计一个优化损失函数以进一步提高重建图像的质量。实验结果表明,设计的去噪方法能够从高噪声图像中重建高质量的图像,同时能够保留更多的细节特征信息,有效验证了该算法在图像去噪中的有效性。该方法能够有效解决高噪声图像的去噪问题,具有重要的应用价值。
中图分类号:
[1]LIU D,JIA J L,ZHAO Y Q,et al.Overview of Image Denoising Methods Based on Deep Learning[J].Computer Engineering and Applications,2021,57(7):1-13. [2]BUADES A,COLL B,MORELJ M.A non-local agorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).IEEE,2005:60-65. [3]DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. [4]GU S,ZHANG L,ZUO W,et al.Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:2862-2869. [5]GONDARA L.Medical image denoising using convolutional denoising autoencoders[C]//2016 IEEE 16th International Conference on Data Mining Workshops(ICDMW).IEEE,2016:241-246. [6]ZHANG K,ZUO W,CHEN Y,et al.Beyond a gaussian denoi-ser:Residual learning of deep cnn for image denoising[J].IEEE Transactions on Image Processing,2017,26(7):3142-3155. [7]ZHANG K,ZUO W,ZHANG L.FFDNet:Toward a fast andflexible solution for CNN-based image denoising[J].IEEE Transactions on Image Processing,2018,27(9):4608-4622. [8]LUO R Z,WANG R J,ZHANG K,et al.Image Denoising Methodof Residual Convolution Auto-Encoder Network[J].Computer Simulation,2021,38(5):455-461. [9]LEI J S,YAN C Y,YANG Z G.Convolutional Auto-Encoder for Image Denoising Based on Inception Model[J].Computer Applications and Software,2021,38(2):221-226,322. [10]MA Z P,TAN L D.Blind Image Denoising Method Based onWavelet Autoencoder[J/OL].Journal of Huazhong University of Science and Technology(Natural Science Edition).(2022-12-14)[2023-06-25].https://doi.org/10.13245/j.hust.240208. [11]YIN H T,WANG T Y.Image Denoising Algorithm Based on Deep Multi-scale Convolution Sparse Coding[J].Computer Science,2023,50(4):133-140. [12]MAJUMDAR A.Blind denoising autoencoder[J].IEEE Transactions on Neural Networks and Learning Systems,2018,30(1):312-317. [13]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [14]ZHANG Y,TIAN Y,KONGY,et al.Residual dense network for image restoration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(7):2480-2495. [15]LU Y.The level weighted structural similarity loss:A step away from MSE[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):9989-9990. [16]SNELL J,RIDGEWAY K,LIAO R,et al.Learning to generate images with perceptual similarity metrics[C]//2017 IEEE International Conference on Image Processing(ICIP).IEEE,2017:4277-4281. [17]ZHAO H,GALLO O,FROSIO I,et al.Loss functions for image restoration with neural networks[J].IEEE Transactions on Computational Lmaging,2016,3(1):47-57. [18]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.PMLR,2015:448-456. [19]MA K,DUANMU Z,WU Q,et al.Waterloo exploration database:New challenges for image quality assessment models[J].IEEE Transactions on Image Processing,2016,26(2):1004-1016. [20]TIAN C,XU Y,LI Z,et al.Attention-guided CNN for image denoising[J].Neural Networks,2020,124:117-129. [21]MAIRAL J,BACH F,PONCE J,et al.Non-local sparse models for image restoration[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:2272-2279. [22]ROTH S,BLACK M J.Fields of experts:A framework forlearning image priors[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).IEEE,2002:860-867. [23]SARA U,AKTER M,UDDINM S.Image quality assessment through FSIM,SSIM,MSE and PSNR-a comparative study[J].Journal of Computer and Communications,2019,7(3):8-18. [24]TOMASI C,MANDUCHI R.Bilateral filtering for gray and color images[C]//Sixth International Conference on Computer Vision(IEEE Cat.No.98CH36271).IEEE,1998:839-846. [25]LIU P,ZHANG H,ZHANG K,et al.Multi-level wavelet-CNN for image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2018:773-782. |
|