计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230500019-6.doi: 10.11896/jsjkx.230500019
邬春明, 刘亚丽
WU Chunming, LIU Yali
摘要: 针对YOLOv5算法对CT图像中的肺结节检测效果较差的问题,提出基于改进YOLOv5的肺结节检测方法。将YOLOv5网络中Neck部分的特征金字塔改进为加权双向特征金字塔网络;在YOLOv5网络中的Backbone部分加入高效通道注意力机制与坐标注意力机制。在LIDC-IDRI数据集上进行实验,结果表明,检测的平均精度可达80.2%,召回率可达90.75%,因此该方法能够有效检测肺结节。相较于YOLOv5算法,改进后的算法在mAP上提高了7.7%,在召回率上提高了5.5%。
中图分类号:
[1]ZHANG J,XIA Y,CUI H,et al.Pulmonary nodule detection in medical images:A survey[J].Biomedical Signal Processing and Control,2018,43:138-147. [2]ZHANG Z H,CAI Y Q,HAN D,et al.Artificial intelligence and various levels of physicians in detection of pulmonary nodules:a comparative study[J].Chinese Journal of Medical Imaging,2020,28(9):662-665. [3]KIM Y G,CHO Y,WU C J,et al.Short-term reproducibility of pulmonary nodule and mass detection in chest radiographs:comparison among radiologists and four different computer-aided detections with convolutional neural net[J].Scientific Reports,2019,9:18739. [4]XU J,REN H J,CAI S Z,et al.An improved faster R-CNN algorithm for assisted detection of lung nodules[J].Computers in Biology and Medicine,2023,153:106470. [5]ZHAO P F,ZHAO J J,QIANG Y,et al.Study on detection method of pulmonary nodules with multiple input convolutional neural network[J].Computer Science,2018,45(1):162-166. [6]YUE Q,YIN J Y,WANG S.Automatic detection of pulmonary nodules in low-dose CT images based on improved CNN[J].Computer Science,2022,49(S1):54-59. [7]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:779-788. [8]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2017:7263-7271. [9]REDMON J,FARHADI A.YOLOv3:an incremental improvement[J/OL].(2018-04-08)[2021-09-08].arXiv:1804.02767,2018. [10]BOCHKOVSKIY A,WANG C Y,LIAO H Y.YOLOv4:optimal speed and accuracy of object detection[J/OL].(2020-04-23)[2021-09-08].arXiv:2004.10934,2020. [11]JENA S R,GEORGE S T,PONRAJ D N.Modeling an effectual multi-section you only look once for enhancing lung cancer prediction[J].International Journal of Imaging Systems and Technology,2021,31(4):2144-2157. [12]CHO Y,LEE S M,CHO Y H,et al.Deep chest X-ray:detection and classification of lesions based on deep convolutional neural networks[J].International Journal of Imaging Systems and Technology,2020,31(1):72-81. [13]LIU C Y,HU S C,WANG C H,et al.Automatic detection of pulmonary nodules on CT images with YOLOv3:development and evaluation using simulated and patient data[J].Quantitative Imaging in Medicine and Surgery,2020,10(10):1917-1929. [14]HUANG Y S,CHOU P R,CHEN H M,et al.One-stage pulmonary nodule detection using 3-D DCNN with feature fusion and attention mechanism in CT image[J].Computer Methods and Programs in Biomedicine,2022,220:106786. [15]LIU K H.STBi-YOLO:a real-time object detection method for lung nodule recognition[J].IEEE Access,2022,10:75385-75394. [16]TAN M,PANG R,QUOC V.EfficientDet:scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:10781-10790. [17]TSUNG Y,PIOTR D,ROSS G,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2017:2117-2125. [18]LIU S,QI L,QIN H F.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2018:8759-8768. [19]HU J,SHEN L,SAMUEL A.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,42(8):2011-2023. [20]WANG Q L,WU B G,ZHU P F,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:11534-11542. [21]HOU Q,ZHOU D,FENG J.Coordinate attention for efficientmobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2021:13713-13722. [22]WOO S,PARK J,LEE J Y,et al.CBAM:convolution block attention module[C]//Computer Vision-ECCV 2018:15th European Conference.Springer,2018:3-19. |
|