计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230500019-6.doi: 10.11896/jsjkx.230500019

• 图像处理&多媒体技术 • 上一篇    下一篇

一种改进YOLOv5的CT图像肺结节检测方法

邬春明, 刘亚丽   

  1. 东北电力大学电气工程学院 吉林 吉林 132000
  • 发布日期:2024-06-06
  • 通讯作者: 刘亚丽(452379093@qq.com)
  • 作者简介:(wuchunming@neepu.edu.cn)

Method for Lung Nodule Detection on CT Images Using Improved YOLOv5

WU Chunming, LIU Yali   

  1. College of Electrical Engineering,Northeast Electric Power University,Jilin,Jilin 132000,China
  • Published:2024-06-06
  • About author:WU Chunming,born in 1966,professor,master’s supervisor.His main research interests include image processing and wireless sensor networks.
    LIU Yali,born in 1996,postgraduate.Her main research interest is image processing.

摘要: 针对YOLOv5算法对CT图像中的肺结节检测效果较差的问题,提出基于改进YOLOv5的肺结节检测方法。将YOLOv5网络中Neck部分的特征金字塔改进为加权双向特征金字塔网络;在YOLOv5网络中的Backbone部分加入高效通道注意力机制与坐标注意力机制。在LIDC-IDRI数据集上进行实验,结果表明,检测的平均精度可达80.2%,召回率可达90.75%,因此该方法能够有效检测肺结节。相较于YOLOv5算法,改进后的算法在mAP上提高了7.7%,在召回率上提高了5.5%。

关键词: 肺结节检测, 深度学习, 特征金字塔, 注意力机制

Abstract: To address the problem of poor detection results of lung nodules in CT images by YOLOv5 algorithm,an improved YOLOv5-based lung nodule detection method is proposed.The feature pyramid of the Neck part of the YOLOv5 network is improved to weighted bidirectional feature pyramid network.In the YOLOv5 network,the Backbone part adds an efficient channel attention mechanism and a coordinate attention mechanism.Experiments are conducted on the LIDC-IDRI dataset and the results show that the average detection accuracy id up to 80.2%,and the recall is up to 90.75%,so this method can effectively detect lung nodules.Compared with the YOLOv5 algorithm,the improved algorithm improves 7.7% in mAP and 5.5% in recall.

Key words: Pulmonary nodules detection, Deep learning, Feature pyramid, Attention mechanism

中图分类号: 

  • TP391
[1]ZHANG J,XIA Y,CUI H,et al.Pulmonary nodule detection in medical images:A survey[J].Biomedical Signal Processing and Control,2018,43:138-147.
[2]ZHANG Z H,CAI Y Q,HAN D,et al.Artificial intelligence and various levels of physicians in detection of pulmonary nodules:a comparative study[J].Chinese Journal of Medical Imaging,2020,28(9):662-665.
[3]KIM Y G,CHO Y,WU C J,et al.Short-term reproducibility of pulmonary nodule and mass detection in chest radiographs:comparison among radiologists and four different computer-aided detections with convolutional neural net[J].Scientific Reports,2019,9:18739.
[4]XU J,REN H J,CAI S Z,et al.An improved faster R-CNN algorithm for assisted detection of lung nodules[J].Computers in Biology and Medicine,2023,153:106470.
[5]ZHAO P F,ZHAO J J,QIANG Y,et al.Study on detection method of pulmonary nodules with multiple input convolutional neural network[J].Computer Science,2018,45(1):162-166.
[6]YUE Q,YIN J Y,WANG S.Automatic detection of pulmonary nodules in low-dose CT images based on improved CNN[J].Computer Science,2022,49(S1):54-59.
[7]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:779-788.
[8]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2017:7263-7271.
[9]REDMON J,FARHADI A.YOLOv3:an incremental improvement[J/OL].(2018-04-08)[2021-09-08].arXiv:1804.02767,2018.
[10]BOCHKOVSKIY A,WANG C Y,LIAO H Y.YOLOv4:optimal speed and accuracy of object detection[J/OL].(2020-04-23)[2021-09-08].arXiv:2004.10934,2020.
[11]JENA S R,GEORGE S T,PONRAJ D N.Modeling an effectual multi-section you only look once for enhancing lung cancer prediction[J].International Journal of Imaging Systems and Technology,2021,31(4):2144-2157.
[12]CHO Y,LEE S M,CHO Y H,et al.Deep chest X-ray:detection and classification of lesions based on deep convolutional neural networks[J].International Journal of Imaging Systems and Technology,2020,31(1):72-81.
[13]LIU C Y,HU S C,WANG C H,et al.Automatic detection of pulmonary nodules on CT images with YOLOv3:development and evaluation using simulated and patient data[J].Quantitative Imaging in Medicine and Surgery,2020,10(10):1917-1929.
[14]HUANG Y S,CHOU P R,CHEN H M,et al.One-stage pulmonary nodule detection using 3-D DCNN with feature fusion and attention mechanism in CT image[J].Computer Methods and Programs in Biomedicine,2022,220:106786.
[15]LIU K H.STBi-YOLO:a real-time object detection method for lung nodule recognition[J].IEEE Access,2022,10:75385-75394.
[16]TAN M,PANG R,QUOC V.EfficientDet:scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:10781-10790.
[17]TSUNG Y,PIOTR D,ROSS G,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2017:2117-2125.
[18]LIU S,QI L,QIN H F.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2018:8759-8768.
[19]HU J,SHEN L,SAMUEL A.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,42(8):2011-2023.
[20]WANG Q L,WU B G,ZHU P F,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:11534-11542.
[21]HOU Q,ZHOU D,FENG J.Coordinate attention for efficientmobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2021:13713-13722.
[22]WOO S,PARK J,LEE J Y,et al.CBAM:convolution block attention module[C]//Computer Vision-ECCV 2018:15th European Conference.Springer,2018:3-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!