计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400016-8.doi: 10.11896/jsjkx.230400016
司佳1, 梁建峰1, 谢硕1, 邓英俊2
SI Jia1, LIANG Jianfeng1, XIE Shuo1, DENG Yingjun2
摘要: 异常检测是IaaS云系统运维中的一个关键任务,通过早期预警和提前干预,可有效避免系统崩溃等严重事故的发生。但相较于传统数据中心,IaaS云系统具有较大规模的计算节点,节点拓扑复杂、监测数据量大、缺少标注信息等特点,为IaaS云运维异常检测带来新的挑战。从深度学习的技术框架出发,分析了异常检测问题面临的难点,调研总结了IaaS云系统下常见异常检测算法和相关技术。面向节点异常和系统异常两类典型问题,对深度学习驱动的解决方法进行调研:面向节点级别异常,重点调研了时间依赖的运维数据下由时序数据驱动的检测算法;面向系统级别异常,重点调研了网络拓扑建模下由图数据驱动的检测算法。最后,提出了数据驱动下IaaS云运维数据异常检测中的新问题与新挑战。
中图分类号:
[1]JIANG P.Development and Application of Smart Ocean CloudPlatform under the Internet of Things[J].Journal of Marine Information Technology and Application,2022,3:10-17. [2]SUN C,WANG Y,PAN Z,et al.Design and implementation of island information management and display system based on cloud storage technology[J].Marine Science Bulletin,2019,2:233-240. [3]QIU J,DU Q,QIAN C.KPI-TSAD:A Time-Series AnomalyDetector for KPI Monitoring in Cloud Applications[J].Symmetry,2019,11:1350. [4]GUERRON X,ABRAHO S,INSFRAN E,et al.A taxonomy of quality metrics for cloud services[J].IEEE Access,2020,8:131461-131498. [5]MENG W,LIU Y,ZHU Y,et al.LogAnomaly:UnsupervisedDetection of Sequential and Quantitative Anomalies in Unstructured Logs[C]//Twenty-Eighth International Joint Conference on Artificial Intelligence(IJCAI-19).2019:4739-4745. [6]XIU Z.Request Tracing and Anomalies Detecting System inCloud[D].Wuhan:Huazhong University of Science and Technology,2014. [7]LAVIN A,AHMAD S.Evaluating Real-Time Anomaly Detection Algorithms-The Numenta Anomaly Benchmark[C]//IEEE 14th International Conference on Machine Learning and Applications(ICMLA).2015:38-44. [8]LI Z Y,ZHAO N W,ZHANG S L,et al.Constructing Large-Scale Real-World Benchmark Datasets for AIOps[J/OL].(2022-08-08)[2023-03-08].https://doi.org/10.48550/arXiv.2208.03938. [9]ZHANG X,LIN Q,XU Y,et al.Cross-dataset time series ano-maly detection for cloud systems[C]//USENIX Annual Technical Conference.USENIX Association,2019:1063-1076. [10]LIU H,LU S,MUSUVATHI M,et al.What bugs cause production cloud incidents?[C]//Proceedings of the Workshop on Hot Topics in Operating System.ACM,2019:155-162. [11]VISHWANATH K V,NAGAPPAN N.Characterizing CloudComputing Hardware Reliability[C]//Proceedings of the 1st ACM Symposium on Cloud Computing.ACM,2010:193-204. [12]SOHL-DICKSTEIN J,WEISS E A,MAHESWARANATHAN N,et al.Deep Unsupervised Learning Thermodynamics[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning.ACM,2015:2256-2265. [13]HO J,JAIN A,ABBEEL P.Denoising Diffusion ProbabilisticModels[J/OL].(2020-12-16)[2023-03-08].https://arxiv.org/abs/2006.11239. [14]SIFFER A,FOUQUE P A,TERMIER A,et al.Anomaly Detection in Streams with Extreme Value Theory[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.ACM,2017:1067-1075. [15]WARD R A,WU X,BOTTOU L.AdaGrad stepsizes:sharpconvergence over nonconvex landscapes[C]//Proceedings of the 36th International Conference on Machine Learning.2019:6677-6686. [16]KINGMA D,BA J.Adam:A Method for Stochastic Optimization[J/OL].(2017-01-30)[2023-03-08]https://doi.org/10.48550/arXiv.1412.6980. [17]SETTLES B.Active Learning Literature Survey[J/OL].(2012-03-15)[2023-04-01].http://digital.library.wisc.edu/1793/60660. [18]HAN S,WU Q,ZHANG H,et al.Log-based Anomaly Detection with Robust Feature Extraction and Online Learning[J].IEEE Transactions on Information Forensics and Security,2021,16:2300-2311. [19]ZHAO Y,NASRULLAH Z,HRYNIEWICKI M K,et al.LSCP:Locally Selective Combination in Parallel Outlier Ensembles[C]//Proceedings of the 2019 SIAM International Confe-rence on Data Mining.2019:585-593. [20]MALHOTRA P,VIG L,SHROFF G,et al.Long Short Term Memory Networks for Anomaly Detection in Time Series[C]//23rd European Symposium on Artificial Neural Networks,Computational Intelligence and Machine Learning.2015. [21]LI D,CHEN D,SHI L,et al.MAD-GAN:Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[C]//Artificial Neural Networks and Machine Lear-ning(ICANN 2019):Text and Time Series:28th International Conference on Artificial Neural Networks.ACM,2019:703-716. [22]SU Y,ZHAO Y,NIU C,et al.Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2828-2837. [23]BAI S J,ZICO K J,KOLTUN V,et al.An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling[J/OL].(2018-04-19)[2023-04-08].https://doi.org/10.48550/arXiv.1803.01271. [24]HE Y,ZHAO J.Temporal Convolutional Networks for Anomaly Detection in Time Series[J].Journal of Physics:Conference Series,2019,1213:042050. [25]THILL M,KONEN W,WANG H,et al.Temporal convolu-tional autoencoder for unsupervised anomaly detection in time series[J].Applied Soft Computing,2021,3:107751. [26]PHAM T,LEE J,PARK C.MST-VAE:Multi-Scale Temporal Variational Autoencoder for Anomaly Detection in Multivariate Time Series[J].Applied Sciences,2022,12(19):10078. [27]VASWANI A,SHAZEER N,PARMAR N,et al.Attention Is All You Need[J/OL].(2017-12-06)[2023-03-08].https://doi.org/10.48550/arXiv.1706.03762. [28]XU J,WU H,WANG J,et al.Anomaly Transformer:Time Series Anomaly Detection with Association Discrepancy[J/OL].(2022-06-29)[2023-03-08].https://doi.org/10.48550/arXiv.2110.02642. [29]TULI S,CASALE G,JENNINGS N R.TranAD:Deep Trans-former Networks for Anomaly Detection in Multivariate Time Series Data[J].Pro.VLDB Endow,2022,15:1201-1214. [30]AHMAD S,LAVIN A,PURDY S,et al.Unsupervised real-time anomaly detection for streaming data[J].Neurocomputing,2017,262:134-147. [31]HE Z,CHEN P,LI X,et al.A Spatiotemporal Deep LearningApproach for Unsupervised Anomaly Detection in Cloud Systems[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(4):1705-1719. [32]DENG A,HOOI B.Graph Neural Network-Based Anomaly Detection in Multivariate Time Series[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2021,35(5):4027-4035. [33]SCARSELLI F,GORI M,TSOIA C,et al.The Graph Neural Network Model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80. [34]KIPF T,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J/OL].(2017-02-22)[2023-03-08].https://doi.org/10.48550/arXiv.1609.02907907K. [35]VELIKOVI P,CUCURULL G,CASANOVA A,et al.GraphAttention Networks[J/OL].(2018-02-04)[2023-03-08].https://doi.org/10.48550/arXiv.1710.10903. [36]ZHENG L,LI Z,LI J,et al.AddGraph:Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN[C]//Twenty-Eighth International Joint Conference on Artificial Intelligence(IJCAI-19).2019:4419-4425. [37]WANG S,LI W,HOU S,et al.STA-GAN:A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data[J].Remote Sensing,2022,15:88. [38]YU W,WEI C,AGGARWAL C C,et al.NetWalk:A FlexibleDeep Embedding Approach for Anomaly Detection in Dynamic Networks[C]//The 24th ACM SIGKDD International Confe-rence on Knowledge Discovery & Data Mining.2018:2672-2681. [39]MA X,WU J,XUE S,et al.A Comprehensive Survey on Graph Anomaly Detection with Deep Learning[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(12):12012-12038. [40]ZHAO N,ZHU J,LIU R,et al.Label-Less:A Semi-Automatic Labelling Tool for KPI Anomalies[C]//IEEE Conference on Computer Communications(INFOCOM 2019).IEEE,2019:1882-1890. [41]ZHANG X,LIN Q,XU Y,et al.Cross-dataset Time SeriesAnomaly Detection for Cloud Systems[C]//USENIX Annual Technical Conference.2019:1063-1076. [42]VERLEYSEN M,FRENA Y.Classification in the Presence of Label Noise:A Survey[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(5):845-869. [43]ZHAO N,CHEN J,YU Z,et al.Identifying bad software changes via multimodal anomaly detection for online service systems[C]//Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.2021:527-539. |
|