计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800115-6.doi: 10.11896/jsjkx.230800115
宋震, 王纪强, 侯墨语, 赵林
SONG Zhen, WANG Jiqiang, HOU Moyu, ZHAO Lin
摘要: 针对输送带缺陷种类繁多、缺陷特征像素占比小以及传统算法检测精度低的问题,采用随机仿射变换,扩充样本数据集;分析各通道间的关联关系及其贡献值对模型特征提取的影响,提出了一种通道关联加权注意力机制,利用关联卷积及全连接方式计算通道关联度及贡献权值,调整相应通道信息占比,提升模型检测精度;分析了上采样以及卷积块对输出特征图大小的影响,改进原特征金字塔特征卷积块及上采样结构,提高算法对小目标的特征提取以及缺陷检测能力;最后在输送带缺陷数据集上进行测试。结果表明:改进算法模型能对输送带典型的异物插入、破损、撕裂等缺陷特征进行有效识别,识别精准度可达99.7%,召回率大于99.5%,平均精度均值达到99.5%。
中图分类号:
[1]CHE J,QIAO T,YANG Y,et al.Longitudinal tear detectionmethod of conveyor belt based on audio-visual fusion[J].Mea-surement,2021,176(1):109152. [2]WANG Y,MIAO C,LIU Y,et al.Research on a sound-based method for belt conveyor longitudinal tear detection[J].Mea-surement,2022,190(1):110787. [3]TOM K,LI J.Heat load estimation of conveyed ore in underground mines[J].CIM Journal,2020,11(2):155-163. [4]MIAO D,WANG Y,YANG L,et al.Foreign Object Detection Method of Conveyor Belt Based on Improved Nanodet[J].IEEE Access,2023,11:23046-23052. [5]HAO X,MENG X,ZHANG Y,et al.Conveyor-Belt Detection ofConditional Deep Convolutional Generative Adversarial Network[J].CMC-Computer Materials & Continua,2021(11):2671-2685. [6]ZHANG M,SHI H,ZHANG Y,et al.Deep learning-baseddamage detection of mining conveyor belt[J].Measurement,2021,175(99):109130. [7]QU D,QIAO T,PANG Y,et al.Research On ADCN Method For Damage Detection Of Mining Conveyor Belt[J].IEEE Sensors Journal,2020,21(6):8662-8669. [8]LI W,LI C,YAN F.Research on belt tear detection algorithm based on multiple sets of laser line assistance[J].Measurement,2021,174(2):109047. [9]LV Z,ZHANG X,HU J,et al.Visual detection method based on line lasers for the detection of longitudinal tears in conveyor belts[J].Measurement,2021,183(6):109800. [10]PATENTINHABER G.Method and display device for displaying a wear dimension of an endless roller link conveyor belt or chain link conveyor belt:DE,DE102020114979B4[P].[2022-04-07]. [11]ZHAO C.On-line Monitoring System for Longitudinal Tear of Conveyor Belt based on Lab-VIEW[C]//International Confe-rence on Advances in Electrical Engineering and Computer Applications.2022. [12]HU X,ZONG M.Fault Prediction Method of Belt ConveyorBased on Grey Least Square Support Vector Machine[C]//International Conference on Measuring Technology and Mechatronics Automation,2021. [13]MIAO D,WANG Y,LI S.Sound-Based Improved DenseNetConveyor Belt Longitudinal Tear Detection[J].IEEE Access,2022:123801-123808. [14]HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//IEEE International Conference on Computer Uision(ICCV),2017. [15]SUN X H,GU J N,HUANG R.A modified SSD method forElectronic Components Fast Recognition.[J].Optik,2020,205:163767. [16]LI Y,LU Y J,CHEN J.A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector.[J].Automation in Construction,2021,124:103602. [17]GUO F,QIAN Y,SHI Y F.Real-time railroad track components inspection based on the improved YOLOv4 framework.[J].Automation in Construction,2021,125(3):103596. [18]LI C L,XIE G,WANG Y,et al.Defect detection of polaroidbased on YOLOv3-Tiny-D algorithm[J].Computer Integrated Manufacturing Systems,2022,28(3):787-797. [19]SHENG P F,HAO X L,LYU J L.Conveyor belt tear detection with improved regional convolution neural network[J].Compu-ter Engineering And Design,2023,44(3):908-915 [20]HAO S,ZHANG X,MA X,et al.Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J].Journal of China Coal Society,2022,47(11):4147-4156. |
|