计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230900099-10.doi: 10.11896/jsjkx.230900099

• 计算机软件&体系架构 • 上一篇    下一篇

面向利润优化的软实时云服务调度与多服务器系统配置方法研究

王添1, 沈伟4, 张功萱2, 徐林丽3, 王震1, 郁云1   

  1. 1 江苏财会职业学院信息工程学院 江苏 连云港 222061
    2 南京理工大学计算机科学与工程学院 南京 210094
    3 江苏海洋大学理学院 江苏 连云港 222061
    4 阿里云(中国) 杭州 310030
  • 发布日期:2024-06-06
  • 通讯作者: 王震(wangzhen@jscfa.edu.cn)
  • 基金资助:
    国家自然科学基金(62272232);教育部产学研创新基金(2022IT224);江苏高校哲学社会科学研究项目(2023SJYB1851);连云港市基础研究计划基金(JCYJ2328);江苏财会职业学院科研启动项目(2023GC06);江苏财会职业学院基础科研项目(2023XJ19)

Soft Real-time Cloud Service Request Scheduling and Multiserver System Configuration for ProfitOptimization

WANG Tian1, SHEN Wei4, ZHANG Gongxuan2, XU Linli3, WANG Zhen1, YUN Yu1   

  1. 1 School of Information Science,Jiangsu College of Finance and Accounting,Lianyungang,Jiangsu 222061,China
    2 School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
    3 School of Science,Jiangsu Ocean University,Lianyungang,Jiangsu 222061,China
    4 Alibaba Cloud,Hangzhou 310030,China
  • Published:2024-06-06
  • About author:WANG Tian,born in 1990,Ph.D,lectu-rer,is a member of CCF(No.A6921M).His main research interests include cloud computing,edge computing,and hyperphysical system.
    WANG Zheng,born in 1972,master,professor. His main research interests include computer application technology,big data and e-commerce,and computer systems.
  • Supported by:
    National Natural Science Foundation of China(62272232),Industry University Research Innovation Foundation of the Ministry of Education of China(2022IT224),College Philosophy and Social Science Foundation of Jiangsu(2023SJYB1851),Lianyungang Research Foundation for Basic Research(JCYJ2328),Science Research Staring Foundation of Jiangsu College of Finance and Accounting(2023GC06) and Basic Research Foundation of Jiangsu College of Finance and Accounting(2023XJ19).

摘要: 在云计算中,由于多核技术的不断革新,近年来有许多工作研究了基于多核处理器的多服务器系统。云服务提供商通过建立多服务器系统给用户提供云服务并优化云服务利润是目前云计算领域的一个热点问题,对这些问题的研究推动着云计算技术的不断发展。然而,现有的关于多服务器系统的研究要么局限于通过对多服务器计算资源的配置来优化云服务利润而忽视了云服务请求本身的可调度性,要么局限于开发服务请求调度策略来提升云服务利润而忽视了多服务器系统的动态扩展性。但若使用云服务请求调度与多服务器配置协同优化来提升云服务利润,则会使问题规模的复杂性呈指数增长。因此,为云服务提供商设计一个面向软实时云服务请求的云服务调度与多服务器配置方法是十分必要的。此外,现有的研究在配置多服务器系统时大多忽略了处理云服务请求会遭受瞬时故障的情况。而许多研究表明,软实时任务在遭受瞬时故障时会影响服务请求的执行结果从而影响云服务利润。本研究面向软实时云服务请求,针对云环境中普遍存在的计算性能异构的服务器资源,开发了一个基于深度搜索的灰狼算法来协同优化云服务请求调度和多服务器配置以最大化云服务利润。最后,为了验证所提方法的有效性,进行了大量实验,实证结果表明,与现有的基准方法相比,所提方法得到的云服务利润平均增加了6.83%。

关键词: 云计算, 多服务器系统配置, 云服务请求调度, 云服务利润最大化, 软错误可靠性

Abstract: In cloud computing,there has been considerable research on multi-server systems based on the continuous innovation of multi-core technology.Establishing multi-server systems to provide cloud services to users and optimizing cloud service profitability is a hot topic in cloud computing.Research on these issues drives the continuous development of cloud computing technology.However,existing studies on multi-server systems either focus on optimizing cloud service profitability through the configuration of multi-server computing resources,neglecting the schedulability of cloud service requests themselves,or concentrate on developing service request scheduling strategies to improve cloud service profitability while overlooking the dynamic scalability of multi-server systems.However,when using coordinated optimization of cloud service scheduling and multi-server configuration to enhance cloud service profitability,the complexity of the problem increases exponentially.Therefore,it is essential to design a cloud service scheduling and multi-server configuration method for providers targeting soft real-time cloud service requests.Besides,existing research on configuring multi-server systems often overlooks the transient faults in processing cloud service requests.Numerous studies have demonstrated that soft real-time tasks can be affected by transient faults,leading to variations in the execution results of service requests and impacting cloud service profitability.In this study,we focus on soft real-time cloud service requests and develop a depth-search-based grey wolf algorithm to jointly optimize cloud service request scheduling and multi-server configuration,considering the prevalent computational performance heterogeneity of server resources in cloud environments,aiming to maximize cloud service profitability.Finally,extensive experiments validate the effectiveness of the proposed method.The empirical results demonstrate that,compared with the existing benchmark methods,the cloud service profits obtained by the proposed method increase by an average of 6.83%.

Key words: Cloud computing, Multi-server system configuration, Cloud service request scheduling, Cloud service profit maximization, Soft error reliability

中图分类号: 

  • TP391
[1]MA X J,RAO G B,XU H H.Research on Task Scheduling in Cloud Computing[J].Computer Science,2019,46(3):1-8.
[2]ZHOU M S,DONG X S,CHEN H,et al.Improving Cloud Platform Based on the Runtime Resource Capacity Evaluation[J].Journal of Computer Research and Development,2017,54(11):2516-2533.
[3]CONG P,LI L,ZHOU J,et al.Developing user perceived value based pricing models for cloud markets[J].IEEE Transactions on Parallel and Distributed Systems,2018,29(12):2742-2756.
[4]WANG T,ZHOU J,ZHANG G,et al.Customer perceived va-lue and risk aware multiserver configuration for profit maximization[J].IEEE Transactions on Parallel and Distributed Systems,2020,13(5):1074-1088.
[5]SUN D W,CHANG G R,CHEN D,et al.Profiling,Quanti-fying, Modeling and Evaluating Green Service Level Objectives in Cloud Computing Environments[J].Chinese Journal of Computers,2013,36(7):1509-1525.
[6]LUČANIN D,PIETRI I,HOLMBACKA S,et al.Performance-based pricing in multi-core geo-distributed cloud computing[J].IEEE Transactions on Cloud Computing,2020,8(4):1079-1092.
[7]CAO J,HUANG K,LI K,et al.Optimal multiserver configu-ration for profit maximization in cloud computing[J].IEEE Transactions on Parallel and Distributed Systems,2013,24(6):1087-1096.
[8]Service Level Agreement[OL].[2021-12-27]https://en.wikipedia.org/wiki/Service level agreement.
[9]MEI J,LI K,LI K.Customer-Satisfaction-Aware Optimal Multiserver Configuration for Profit Maximization in Cloud Computing[J].IEEE Transactions on Sustainable Computing,2017,2(1):17-29.
[10]GOUDARZI H,PEDRAM M.Maximizing profit in cloud computing system via resource allocation[C]//Proceedings of IEEE International Conference on Distributed Computing Systems.Minneapolis,MN,2011:1-6.
[11]MEI J,LI K,OUYANG A,et al.A profit maximization scheme with guaranteed quality of service in cloud computing[J].IEEE Transactions on Computers,2015,64(11):3064-3078.
[12]KANG Z,YANG B.A study of optimal multi-server systemconfiguration with variate deadlines and rental prices in cloud computing[C]//Proceedings of Springer International Confe-rence on Human Centered Computing.Cham:Springer,2017:215-231.
[13]XU H,LI B.Dynamic cloud pricing for revenue maximization[J].IEEE Transactions on Cloud Computing,2013,1(2):158-171.
[14]ALI H,SAROIT A,KOTB M.Grouped tasks scheduling algorithm based on QoS in cloud computing network[J].Egyptian Informatics Journal,2017,18(1):11-19.
[15]CHEN W,XIE G,LI R,et al.Efficient task scheduling for bu-dget constrained parallel applications on heterogeneous cloud computing systems[J].Future Generation Computer Systems,2017,74:1-11.
[16]TIAN J,HU W,WANG Y,et al.A novel PSO based taskscheduling algorithm for multi-core systems[C]//Proceedings of International Conference on Smart Computing and Communication.Cham:Springer,2016:62-71.
[17]DENG Y,CHENG H.A heterogeneous multiprocessor taskscheduling algorithm based on SFLA[C]//Proceedings of World Automation Congress.Rio Grande,PR,2016:1-5.
[18]iCloud[OL].[2023-06-06].https://support.apple.com/zh-cn/HT208351.
[19]WANG T,ZHOU J,LI L,et al.Deadline and Reliability Aware Multiserver Configuration Optimization for Maximizing Profit[C]//IEEE Transactions on Parallel and Distributed Systems.2022:3772-3786.
[20]WANG T,ZHANG M,SHEN W,et al.A multiserver configuration and request distribution framework for profit maximization in a three-tier cloud service architecture[J].Journal of Circuits,Systems,and Computers,2022,31(12):2250221.
[21]KOBAYASHI H,KONHEIM A.Queueing Models for Compu-ter Communications System Analysis[J].IEEE Transactions on Communications,1977,25(1):2-29.
[22]SONG J,LI T T,YAN Z X,et al.Energy-Efficiency Model and Measuring Approach for Cloud Computing[J].Journal of Software,2012,23(2):200-214.
[23]HU Y,LIU C,LI K,et al.Slack allocation algorithm for energy minimization in cluster systems[J].Future Generation Compu-ter System,2017,74:119-131.
[24]WU T,GU H,ZHOU J,et al.Soft error-aware energy-efficient task scheduling for workflow applications in DVFS-enabled cloud[J].Journal of Systems and Architecture,2018,84:12-27.
[25]LI J,LIN B,CHEN X.Reliability Constraint-oriented Workflow Scheduling Strategy in Cloud Environment[J].Computer Science,2023,50(10):291-298.
[26]WU Y H,HUANG G,ZHANG Y,et al.A Model-Based Fault Tolerance Mechanism Development Approach for Cloud Computing[J]. Journal of Computer Research and Development,2016,53(1):138-154.
[27]ZHOU J,LI L,VAJDI A,et al.Temperature-Constrained Reliability Optimization of Industrial Cyber-Physical Systems Using Machine Learning and Feedback Control[C]//IEEE Transactions on Automation Science and Engineering.2023:20-31.
[28]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69(3):46-61.
[29]HAQUE M A,AYDIN H,ZHU D.On reliability managementof energy-aware real-time systems through task replication[J].IEEE Transacations on Parallel Distributed Systems,2017,28(3):813-825.
[30]AMD EPYC7742,2022[OL].https://www.amd.com/zhhans/pro-ducts/cpu/amd-epyc-7742.
[31]Intel Platinum 8376H,2022[OL].https://www.intel.cn/content/www/cn/zh/products/sku/204096/intel-xeon-platinum-83-76h-processor-38-5m-cache-2-60-ghz/specifications.html.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!