计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230900099-10.doi: 10.11896/jsjkx.230900099
王添1, 沈伟4, 张功萱2, 徐林丽3, 王震1, 郁云1
WANG Tian1, SHEN Wei4, ZHANG Gongxuan2, XU Linli3, WANG Zhen1, YUN Yu1
摘要: 在云计算中,由于多核技术的不断革新,近年来有许多工作研究了基于多核处理器的多服务器系统。云服务提供商通过建立多服务器系统给用户提供云服务并优化云服务利润是目前云计算领域的一个热点问题,对这些问题的研究推动着云计算技术的不断发展。然而,现有的关于多服务器系统的研究要么局限于通过对多服务器计算资源的配置来优化云服务利润而忽视了云服务请求本身的可调度性,要么局限于开发服务请求调度策略来提升云服务利润而忽视了多服务器系统的动态扩展性。但若使用云服务请求调度与多服务器配置协同优化来提升云服务利润,则会使问题规模的复杂性呈指数增长。因此,为云服务提供商设计一个面向软实时云服务请求的云服务调度与多服务器配置方法是十分必要的。此外,现有的研究在配置多服务器系统时大多忽略了处理云服务请求会遭受瞬时故障的情况。而许多研究表明,软实时任务在遭受瞬时故障时会影响服务请求的执行结果从而影响云服务利润。本研究面向软实时云服务请求,针对云环境中普遍存在的计算性能异构的服务器资源,开发了一个基于深度搜索的灰狼算法来协同优化云服务请求调度和多服务器配置以最大化云服务利润。最后,为了验证所提方法的有效性,进行了大量实验,实证结果表明,与现有的基准方法相比,所提方法得到的云服务利润平均增加了6.83%。
中图分类号:
[1]MA X J,RAO G B,XU H H.Research on Task Scheduling in Cloud Computing[J].Computer Science,2019,46(3):1-8. [2]ZHOU M S,DONG X S,CHEN H,et al.Improving Cloud Platform Based on the Runtime Resource Capacity Evaluation[J].Journal of Computer Research and Development,2017,54(11):2516-2533. [3]CONG P,LI L,ZHOU J,et al.Developing user perceived value based pricing models for cloud markets[J].IEEE Transactions on Parallel and Distributed Systems,2018,29(12):2742-2756. [4]WANG T,ZHOU J,ZHANG G,et al.Customer perceived va-lue and risk aware multiserver configuration for profit maximization[J].IEEE Transactions on Parallel and Distributed Systems,2020,13(5):1074-1088. [5]SUN D W,CHANG G R,CHEN D,et al.Profiling,Quanti-fying, Modeling and Evaluating Green Service Level Objectives in Cloud Computing Environments[J].Chinese Journal of Computers,2013,36(7):1509-1525. [6]LUČANIN D,PIETRI I,HOLMBACKA S,et al.Performance-based pricing in multi-core geo-distributed cloud computing[J].IEEE Transactions on Cloud Computing,2020,8(4):1079-1092. [7]CAO J,HUANG K,LI K,et al.Optimal multiserver configu-ration for profit maximization in cloud computing[J].IEEE Transactions on Parallel and Distributed Systems,2013,24(6):1087-1096. [8]Service Level Agreement[OL].[2021-12-27]https://en.wikipedia.org/wiki/Service level agreement. [9]MEI J,LI K,LI K.Customer-Satisfaction-Aware Optimal Multiserver Configuration for Profit Maximization in Cloud Computing[J].IEEE Transactions on Sustainable Computing,2017,2(1):17-29. [10]GOUDARZI H,PEDRAM M.Maximizing profit in cloud computing system via resource allocation[C]//Proceedings of IEEE International Conference on Distributed Computing Systems.Minneapolis,MN,2011:1-6. [11]MEI J,LI K,OUYANG A,et al.A profit maximization scheme with guaranteed quality of service in cloud computing[J].IEEE Transactions on Computers,2015,64(11):3064-3078. [12]KANG Z,YANG B.A study of optimal multi-server systemconfiguration with variate deadlines and rental prices in cloud computing[C]//Proceedings of Springer International Confe-rence on Human Centered Computing.Cham:Springer,2017:215-231. [13]XU H,LI B.Dynamic cloud pricing for revenue maximization[J].IEEE Transactions on Cloud Computing,2013,1(2):158-171. [14]ALI H,SAROIT A,KOTB M.Grouped tasks scheduling algorithm based on QoS in cloud computing network[J].Egyptian Informatics Journal,2017,18(1):11-19. [15]CHEN W,XIE G,LI R,et al.Efficient task scheduling for bu-dget constrained parallel applications on heterogeneous cloud computing systems[J].Future Generation Computer Systems,2017,74:1-11. [16]TIAN J,HU W,WANG Y,et al.A novel PSO based taskscheduling algorithm for multi-core systems[C]//Proceedings of International Conference on Smart Computing and Communication.Cham:Springer,2016:62-71. [17]DENG Y,CHENG H.A heterogeneous multiprocessor taskscheduling algorithm based on SFLA[C]//Proceedings of World Automation Congress.Rio Grande,PR,2016:1-5. [18]iCloud[OL].[2023-06-06].https://support.apple.com/zh-cn/HT208351. [19]WANG T,ZHOU J,LI L,et al.Deadline and Reliability Aware Multiserver Configuration Optimization for Maximizing Profit[C]//IEEE Transactions on Parallel and Distributed Systems.2022:3772-3786. [20]WANG T,ZHANG M,SHEN W,et al.A multiserver configuration and request distribution framework for profit maximization in a three-tier cloud service architecture[J].Journal of Circuits,Systems,and Computers,2022,31(12):2250221. [21]KOBAYASHI H,KONHEIM A.Queueing Models for Compu-ter Communications System Analysis[J].IEEE Transactions on Communications,1977,25(1):2-29. [22]SONG J,LI T T,YAN Z X,et al.Energy-Efficiency Model and Measuring Approach for Cloud Computing[J].Journal of Software,2012,23(2):200-214. [23]HU Y,LIU C,LI K,et al.Slack allocation algorithm for energy minimization in cluster systems[J].Future Generation Compu-ter System,2017,74:119-131. [24]WU T,GU H,ZHOU J,et al.Soft error-aware energy-efficient task scheduling for workflow applications in DVFS-enabled cloud[J].Journal of Systems and Architecture,2018,84:12-27. [25]LI J,LIN B,CHEN X.Reliability Constraint-oriented Workflow Scheduling Strategy in Cloud Environment[J].Computer Science,2023,50(10):291-298. [26]WU Y H,HUANG G,ZHANG Y,et al.A Model-Based Fault Tolerance Mechanism Development Approach for Cloud Computing[J]. Journal of Computer Research and Development,2016,53(1):138-154. [27]ZHOU J,LI L,VAJDI A,et al.Temperature-Constrained Reliability Optimization of Industrial Cyber-Physical Systems Using Machine Learning and Feedback Control[C]//IEEE Transactions on Automation Science and Engineering.2023:20-31. [28]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69(3):46-61. [29]HAQUE M A,AYDIN H,ZHU D.On reliability managementof energy-aware real-time systems through task replication[J].IEEE Transacations on Parallel Distributed Systems,2017,28(3):813-825. [30]AMD EPYC7742,2022[OL].https://www.amd.com/zhhans/pro-ducts/cpu/amd-epyc-7742. [31]Intel Platinum 8376H,2022[OL].https://www.intel.cn/content/www/cn/zh/products/sku/204096/intel-xeon-platinum-83-76h-processor-38-5m-cache-2-60-ghz/specifications.html. |
|