计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700086-8.doi: 10.11896/jsjkx.230700086

• 交叉&应用 • 上一篇    下一篇

面向产线AI质检的少样本评测方法研究和验证

焦若丹, 高东辉, 黄艳华, 刘硕, 段宣翡, 王蕊, 刘伟东   

  1. 中国移动通信有限公司研究院 北京 100053
  • 发布日期:2024-06-06
  • 通讯作者: 高东辉(gaodonghui@chinamobile.com)
  • 作者简介:(jiaoruodan@chinamobile.com)

Study and Verification on Few-shot Evaluation Methods for AI-based Quality Inspection in Production Lines

JIAO Ruodan, GAO Donghui, HUANG Yanhua, LIU Shuo, DUAN Xuanfei, WANG Rui, LIU Weidong   

  1. China Mobile Research Institute,Beijing 100053,China
  • Published:2024-06-06
  • About author:JIAO Ruodan,born in 1989,master,intermediate engineer.Her main research interests include artificial intelligence,vertical industry and other fields eva-luation technology.
    GAO Donghui,born in 1980,Ph.D,principal researcher,senior Engineer.His main research interests include the eva-luation of artificial intelligence and information communication technologies,and the development of assessment systems.

摘要: 随着工业4.0时代的到来,制造业与人工智能的深度融合已成为了业界的重要发展趋势,工业质检是其中的重要突破口,但目前业界缺乏对工业质检产品进行评估的标准方法,各质检产品的性能往往不透明,不利于优化迭代及规模推广。针对上述问题,提出了一种面向工业界产线应用需求的AI工业质检算法评测方法,可在工业领域样本数量少且不均衡的情况下,面向产线落地应用需求,对AI工业质检产品及其竞品进行对标评估。该评测方法通过交叉验证法构建数据集,从而避免数据集规模小且不均衡导致的评测结果波动较大的问题,通过灰盒测试法避免数据集来源单一导致的评测结果不客观问题,并根据产线实际生产需求制定相关评估指标,可真实反映产线应用场景下质检产品检测性能。将上述方法应用于光伏电池片EL检测产品的对标评测中进行验证,结果表明该评测方法具备可行性,且能客观反映各产品的真实性能。最后,基于对评测结果的分析对比,为AI工业质检产品的优化提供了一些建议。

关键词: AI工业质检, 深度学习, 目标检测, 缺陷检测, 评测方法, 光伏电池EL检测

Abstract: With the advent of industry 4.0,the deep integration of manufacturing industry with artificial intelligence(AI) has become an important development trend.Industrial quality inspection has emerged as a significant breakthrough point.However,there is currently a lack of standardized methods for evaluating industrial quality inspection products in the industry.The performance of various quality inspection products is often opaque,making it difficult to optimize and scale up.In response to this situation,this paper proposes an AI-based industrial quality inspection algorithm evaluation method,which is suitable for the application needs of production lines in the industrial field.This method can evaluate AI-based industrial quality inspection products and their competitors in situations where the sample size is small and imbalanced.The evaluation method constructs a data set through cross-validation to avoid the problem of large evaluation result fluctuations caused by small and imbalanced data sets.It also uses gray box testing to avoid the subjectivity in evaluation results caused by a single source of data.Furthermore,it formulates relevant evaluation indicators based on the actual production needs of the production line,which can truly reflect the detection performance of quality inspection products in the production line application scenario.The proposed method is validated through benchmark evaluation of EL testing products for photovoltaic cells,demonstrating its feasibility and its ability to objectively reflect the true performance of various products.Finally,based on the analysis and comparison of the evaluation results,some suggestions are provided for the optimization of AI-based industrial quality inspection products.

Key words: Industrial quality inspection by AI, Deep learning, Object detection, Defect detection, Evaluation methods, Photovoltaic cell EL inspection

中图分类号: 

  • TP391
[1]国家工业信息安全发展研究中心.AI工业质检应用发展白皮书.[R/OL].https://www.zhangqiaokeyan.com/academic-journal-cn_ceocio-china_thesis/02012102861837.html.
[2]LUO D L,CAI Y X,YANG Z H,et al.Survey on industrial defect detection with deep learning[J].Sci SinInform,2022,52:1002-1039.
[3]DENG Y S,LUO A C,DAI M J.Building an automatic defect verification system using deep neural network for PCB defect classification[C]//Proceedings of the 4th International Conference on Frontiers of Signal Processing(ICFSP).2018:145-149.
[4]DEITSCH S,CHRISTLEIN V,BERGER S,et al.Automaticclassification of defective photovoltaic module cells in electrolu-minescence images[J].Sol Energy,2019,185:455-468.
[5]ZHANG Z,WEN G,CHEN S.Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding[J].J Manuf Processes,2019,45:208-216.
[6]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of Advances in Neural Information Processing Systems.2015:91-99.
[7]HE Y,SONG K,MENG Q,et al.An end-to-end steel surfacedefect detection approach via fusing multiple hierarchical features[J].IEEE Trans Instrum Meas,2020,69:1493-1504.
[8]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708.
[9]REDMON J,FARHADI A.Yolov3:an incremental improve-ment[J].arXiv:1804.02767101255,2018.
[10]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Visionand Pattern Recognition.2016:779-788.
[11]REDMON J,FARHADI A.Yolo9000:better,faster,stronger[C]//CVPR.2017.
[12]LI J,SU Z,GENG J,et al.Real-time detection of steel strip surface defects based on improved YOLO detection network[J].IFAC-Papers OnLine,2018,51:76-81.
[13]CHEN S H,TSAI C C.SMD LED chips defect detection using a YOLOv3-dense model[J].Adv Eng Inf,2021,47:101255.
[14]CHA Y J,CHOI W,SUH G,et al.Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J].Comput-Aided Civil Infrastruct Eng,2018,33:731-747.
[15]TAO X,ZHANG D,WANG Z,et al.Detection of power line insulator defects using aerial images analyzed with convo-lutional neural networks[J].IEEE Trans Syst Man Cybern Syst,2020,50:1486-1498.
[16]ZHANG C,CHANG C,JAMSHIDI M.Concrete bridge surface damage detection using a single-stage detector[J].Comput-Aided Civil Infrastruct Eng,2020,35:389-409.
[17]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440.
[18]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2015:234-241.
[19]QIU L,WU X,YU Z.A high-efficiency fully convolutional networks for pixel-wise surface defect detection[J].IEEE Access,2019,7:15884-15893.
[20]HUANG Y,QIU C,YUAN K.Surface defect saliency of magnetic tile[J].Vis Comput,2020,36:85-96.
[21]XIE Y,ZHU F,FU Y.Main-secondary network for defect segmentation of textured surface images[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2020:3531-3540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!