计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230900016-7.doi: 10.11896/jsjkx.230900016

• 交叉&应用 • 上一篇    下一篇

基于非线性交通流模型的交通子区边界控制策略研究

王晓龙   

  1. 山西省智慧交通研究院有限公司 太原 030032
  • 发布日期:2024-06-06
  • 通讯作者: 王晓龙(xlwang84@126.com)
  • 基金资助:
    国家自然科学基金(61703300)

Traffic Subarea Boundary Control Strategy Based on Nonlinear Traffic Flow Model

WANG Xiaolong   

  1. Shanxi Intelligent Transportation Research Institute Co.,Ltd,Taiyuan,030032,China
  • Published:2024-06-06
  • About author:WANG Xiaolong,born in 1984,master,senior engineer. His main reseach interests is intelligent traffic control.
  • Supported by:
    National Natural Science Foundation of China(61703300).

摘要: 城市交通流具有复杂的非线性动态特征,用简化的线性交通流模型无法准确描述交通流的非线性特征。因此,在考虑扰动对子区边界控制影响的基础上,首先建立了考虑扰动的非线性城市宏观交通流模型,该模型能够更好地描述实际交通流的运行情况。其次,结合城市交通流运行的周期性特点,设计了基于迭代学习控制的子区边界控制策略,并利用Lipschitz条件和偏导数分析了迭代学习控制律的收敛性。最后,通过仿真案例验证了基于非线性交通流模型的交通子区边界控制策略的有效性。

关键词: 城市交通, 边界控制, 迭代学习控制, 非线性交通流模型

Abstract: Urban traffic flow has complex nonlinear dynamic characteristics,which cannot be accurately described by a simplified linear traffic flow model.Therefore,in this paper,on the basis of considering the influence of perturbation on subarea boundary control,a nonlinear urban macroscopic traffic flow model considering perturbation is firstly established,so that the model can better describe the operation of actual traffic flow.Secondly,a subarea boundary control strategy based on iterative learning control is designed by combining the periodic characteristics of urban traffic flow operation,and the convergence of the iterative learning control law is analyzed by using the Lipschitz condition and partial derivatives.Finally,the effectiveness of the traffic subarea boundary control strategy based on the nonlinear traffic flow model is demonstrated by simulation cases.

Key words: Urban traffic, Perimeter control, Iterative learning control, Nonlinear traffic flow model

中图分类号: 

  • TP273
[1]YU Z,NING N W,ZHENG Y L,et al.Review of Intelligent Traffic Signal Control Strategies Driven by Deep Reinforcement Learning[J].Computer Science,2023,50(4):159-171.
[2]OU Y Z,ZHOU S Y,LV Y,et al.DRL-based Vehicle ControlStrategy for Signal-free Intersections[J].Computer Science,2022,49(3):46-51.
[3]SUN H,CHEN C L,LIU Q,et al.Traffic Signal Control Me-thod Based on Deep Reinforcement Learning[J].Computer Science,2020,47(2):169-174.
[4]HADDAD J,ZHENG Z F.Adaptive perimeter control for multi-region accumulation-based models with state delays[J].Transportation Research Part B,2020,137(7):133-153.
[5]HADDAD J,SHRAIBER A.Robust perimeter control designfor an urban region[J].Transportation Research Part B:Me-thodological,2014,68:315-332.
[6]KEYVAN-EKBATAN I,PAPAGEORGIOU M,KNOOP V L.Controller design for gating traffic control in presence oftime-delay in urban road networks[J].Transportation Research Procedia,2015,59(10):308-322.
[7]HADDAD J.Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics[J].Transportation Research Part B,2015,96(13):1-25.
[8]HAJIAHMADI M,HADDAD J,SCHUTTER B D,et al.Optimal hybrid perimeter and switching plans control for urban traffic networks[J].IEEE Transactions on Control Systems Technology,2015,23(2):464-478.
[9]ZHONG R X,CHEN C,HUANG Y P,et al.Robust perimeter control for two urban regions with macroscopic fundamental diagrams:a control-Lyapunov function approach[J].Transportation Research Procedia,2017,23(9):922-941.
[10]HADDAD J.Optimal coupled and decoupled perimeter control in one-region cities[J].Control Engineering Practice,2017,61(10):134-148.
[11]DING H,ZHNAG Y,ZHENG X,et al.Hybrid perimeter control for two-region urban cities with different states[J].Control Systems Technology,IEEE Transactions,2018,26(6):2049-2062.
[12]HADDAD J,ZHENG Z.Adaptive perimeter control for multi-region accumulation-based models with state delays[J].Transportation Research Part B,2018,137(6):1-21.
[13]HOU Z S,XU J X.Freeway traffic density control using iterative learning control approach[C]//IEEE.The IEEE 6th International Conference on Intelligent Transportation Systems.Shanghai:IEEE Press;2003:1081-1086.
[14]HOU Z S,XU J X,YAN J W.An iterative learning approach for density control of freeway traffic flow via ramp metering[J].Transportation Research Part C,2008,16(1):71-97.
[15]HOU Z,XU X,YAN J,et al.A complementary modularizedramp metering approach based on iterative learning control and ALINEA[J].IEEE Transactions on Intelligent Transportation Systems,2011,12(4):1305-1318.
[16]YAN F,TIAN F L,SHI Z K,et al.Iterative learning approach for traffic signal control of urban road networks[J].IET Control Theory and Applications,2017,11(4):466-475.
[17]YAN F,TIAN F L,SHI Z K.An extended signal control strategy for urban network traffic flow[J].Physica A:Statistical Mechanics and its Applications,2016,445:117-127.
[18]DING Y,JIN S,YIN C,et al.ILC based perimeter control for an urban traffic network[C]//2016 14th International Conference on Control,Automation,Robotics and Vision(ICARCV).IEEE,2016:1-6.
[19]SU X,HUANG C,WANG W,et al.Iterative learning control with initial rectifying for nonlinear robotic system[C]//2017 11th Asian Control Conference(ASCC).IEEE,2017:1543-1547.
[20]YAN F,WANG K,SHI Z K.Iterative learning perimeter control method for traffic sub-region considering disturbances[J].Physica A:Statistical Mechanics and its Applications,2021,578(1):126104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!