计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 327-336.doi: 10.11896/jsjkx.230500036
史殿习1,4, 高云琦1,2, 宋林娜3, 刘哲3, 周晨磊4, 陈莹2
SHI Dianxi1,4, GAO Yunqi1,2, SONG Linna3, LIU Zhe3, ZHOU Chenlei4, CHEN Ying2
摘要: 对于非线性的单目VIO系统来说,其初始化过程至关重要,初始化结果的好坏直接影响整个系统运行过程中状态估计的精度。为此,将深度学习方法引入单目VIO系统的初始化过程中,提出了一种高效的非联合初始化方法(简称Deep-Init),其核心是使用深度神经网络对IMU中陀螺仪的偏置和噪声等随机误差项进行准确估计,得到初始化过程中的关键参数,即陀螺仪的bias;同时,将IMU预积分与SfM进行松耦合,通过位置和旋转对齐,使用最小二乘法对绝对尺度、速度以及重力矢量等进行快速恢复,并将其作为初始值来引导非线性紧密耦合的优化框架。由于深度神经网络对陀螺仪数据进行补偿,从而大大提高了IMU中旋转估计量的准确性,有效提高了IMU数据的信噪比,同时减少了最小二乘方程失效的次数,因此进一步减少了计算量。使用去除误差项的陀螺仪数据的预积分量替换SfM中的旋转量,将IMU的旋转量作为真值,不仅避免了将不准确的SfM值作为真值进行初始化时所带来的误差,有效提升了系统状态估计的精度,而且能够有效地适应高速运动、光照变换剧烈和纹理重复等SfM估计效果差的场景。在EuRoC数据集上,对所提方法的有效性了进行实验验证,实验结果表明,所提出的初始化方法Deep-Init无论是精度还是耗时均取得了良好的效果。
中图分类号:
[1]MUR-ARTAL R,MONTIEL J M M,TARDOS J D.ORB-SLAM:a versatile and accurate monocular SLAM system[J].IEEE Transactions on Robotics,2015,31(5):1147-1163. [2]MUR-ARTAL R,TARDÓS J D.Orb-slam2:An open-sourceslam system for monocular,stereo,and rgb-d cameras[J].IEEE Transactions on Robotics,2017,33(5):1255-1262. [3]ENGEL J,KOLTUN V,CREMERS D.Direct sparse odometry[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(3):611-625. [4]QIN T,LI P,SHEN S.Vins-mono:A robust and versatile mo-nocular visual-inertial state estimator[J].IEEE Transactions on Robotics,2018,34(4):1004-1020. [5]GENEVA P,ECKENHOFF K,LEE W,et al.OpenVINS:A Research Platform for Visual-Inertial Estimation[C]//Proceedings of the IEEE International Conference on Robotics and Automation.IEEE,2020. [6]QIN T,SHEN S.Robust initialization of monocular visual-inertial estimation on aerial robots[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2017:4225-4232. [7]CAMPOS C,MONTIEL J M M,TARDÓS J D.Fast and robust initialization for visual-inertial SLAM[C]//2019 International Conference on Robotics and Automation(ICRA).IEEE,2019:1288-1294. [8]YANG Z,SHEN S.Monocular visual-inertial state estimation with online initialization and camera-IMU extrinsic calibration[J].IEEE Transactions on Automation Science and Engineering,2016,14(1):39-51. [9]CAMPOS C,ELVIRA R,RODRÍGUEZ J J G,et al.ORB-SLAM3:An Accurate Open-Source Library for Visual,Visual-Inertial,and Multimap SLAM[J].IEEE Transactions on Robo-tics,2021,37(6):1874-1890. [10]DOMÍNGUEZ-CONTI J,YIN J,ALAMI Y,et al.Visual-inertial slam initialization:A general linear formulation and a gravity-observing non-linear optimization[C]//2018 IEEE International Symposium on Mixed and Augmented Reality(ISMAR).IEEE,2018:37-45. [11]MUR-ARTAL R,TARDÓS J D.Visual-inertial monocularSLAM with map reuse[J].IEEE Robotics and Automation Letters,2017,2(2):796-803. [12]MUSTANIEMI J,KANNALA J,SÄRKKÄ S,et al.Inertial-based scale estimation for structure from motion on mobile devices[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2017:4394-4401. [13]SNAVELY N,SEITZ S M,SZELISKI R.Modeling the world from internet photo collections[J].International Journal of Computer Vision,2008,80(2):189-210. [14]FORSTER C,CARLONE L,DELLAERT F,et al.On-manifold preintegration for real-time visual-inertial odometry[J].IEEE Transactions on Robotics,2016,33(1):1-21. [15]MARTINELLI A.Closed-form solution of visual-inertial structure from motion[J].International Journal of Computer Vision,2014,106(2):138-152. [16]KAISER J,MARTINELLI A,FONTANA F,et al.Simulta-neous state initialization and gyroscope bias calibration in visual inertial aided navigation[J].IEEE Robotics and Automation Letters,2016,2(1):18-25. [17]HUANG W,LIU H.Online initialization and automatic camera-IMU extrinsic calibration for monocular visual-inertial SLAM[C]//2018 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2018:5182-5189. [18]CAMPOS C,MONTIEL J M M,TARDÓS J D.Inertial-only optimization for visual-inertial initialization[C]//2020 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2020:51-57. [19]GAO Y Q,SHI D X,LI R H,et al.Gyro-Net:IMU Gyroscopes Random Errors Compensation Method Based on Deep Learning[C]//IEEE Robotics and Automation Letters. [20]ESFAHANI M A,WANG H,WU K,et al.OriNet:Robust 3-D orientation estimation with a single particular IMU[J].IEEE Robotics and Automation Letters,2019,5(2):399-406. [21]BROSSARD M,BONNABEL S,BARRAU A.Denoising imugyroscopes with deep learning for open-loop attitude estimation[J].IEEE Robotics and Automation Letters,2020,5(3):4796-4803. [22]LUPTON T,SUKKARIEH S.Visual-inertial-aided navigationfor high-dynamic motion in built environments without initial conditions[J].IEEE Transactions on Robotics,2011,28(1):61-76. [23]HORAUD R,DORNAIKA F.Hand-eye calibration[J].The International Journal of Robotics Research,1995,14(3):195-210. |
|