计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 345-353.doi: 10.11896/jsjkx.230500144
田青1,3,4, 卢章虎2, 杨宏2
TIAN Qing1,3,4, LU Zhanghu2, YANG Hong2
摘要: 无监督域适应作为机器学习领域的新兴研究方向之一,其主要利用源域监督信息来辅助无标记目标域的学习。截至目前,已有较多无监督域适应方法被提出,但在关系挖掘方面仍存在一些不足之处。具体来说,现有方法通常对目标域样本采取一致性处理策略,而忽略了目标域样本在关系挖掘中的差异性,因此文中提出了熵值过滤和类质心优化方法。所提方法利用生成对抗网络架构对目标域样本进行标记,利用所获伪标签计算样本熵值,并与所设阈值进行比较,从而进一步划分目标域样本。对于简单样本,分配伪标签;对于困难样本,该方法结合对比学习思想,利用源域和简单样本来学习更加鲁棒的分类器对困难样本分类,并进一步获得源和目标域的类质心。通过优化域间和实例对比对齐,来减小域间和域内的差异。最后,在3个标准数据集上与目前几种先进的领域自适应方法进行了对比实验,实验结果表明所提方法的性能均优于对比方法。
中图分类号:
[1]SUN B,SAENKO K.Deep coral:Correlation alignment for deep domain adaptation[C]//Proceedings of European Conference on Computer Vision.Springer,2016:443-450. [2]TIAN Q,SUN H,MA C,et al.Heterogeneous Domain Adaptation With Structure and Classification Space Alignment[J].IEEE Transactions on Cybernetics,2022,52(10):10328-10338. [3]LONG M,CAO Z,WANG J,et al.Conditional adversarial do-main adaptation[J].Advances in Neural Information Processing Systems,2018,31:1647-1657. [4]PEI Z,CAO Z,LONG M,et al.Multi-Adversarial domain adaptation[C]//Proceedings of AAAI Conference on Artificial Intelligence.AAAI Press,2018:3934-3941. [5]GANIN Y,LEMPITSKY V.Unsupervised domain adaptationby backpropagation[C]//Proceedings of International Confe-rence on Machine Learning.PMLR,2015:1180-1189. [6]TIAN Q,ZHU Y,SUN H,CHEN S,et al.Unsupervised Domain Adaptation Through Dynamically Aligning Both the Feature and Label Spaces[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(12):8562-8573. [7]LONG M,ZHU H,WANG J,et al.Unsupervised domain adaptation with residual transfer networks[J].Advances in Neural Information Processing Systems,2016,29:136-144. [8]TIAN Q,PENG S,MA T.Source-free Unsupervised DomainAdaptation with Trusted Pseudo Samples[J].ACM Transactions on Intelligent Systems and Technology,2023,14(2):2157-6904. [9]OORD A,LI Y,VINYALS O.Representation learning with contrastive predictive coding[J].arXiv:1807.03748,2018. [10]HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2020:9726-9735. [11]KANG G,JIANG L,YANG Y,et al.Contrastive adaptation network for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2019:4893-4902. [12]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//Proceedings of International Conference on Machine Learning.PMLR,2020:1597-1607. [13]GRILL J B,STRUB F,ALTCHE F,et al.Bootstrap your own latent-a new approach to self-supervised learning[J].Advances in Neural Information Processing Systems,2020,33:21271-21284. [14]SINGH A,CHAKRABORTY O,VARSHNEY A,et al.Semi-supervised action recognition with temporal contrastive learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2021:10389-10399. [15]XIE S,ZHENG Z,CHEN L,et al.Learning semantic representations for unsupervised domain adaptation[C]//Proceedings of International Conference on Machine Learning.PMLR,2018:5423-5432. [16]PINHEIRO P O.Unsupervised domain adaptation with similarity learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:8004-8013. [17]PAN Y,YAO T,LI Y,et al.Transferrable prototypical net-works for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2019:2239-2247. [18]YAN H,LI Z,WANG Q,et al.Weighted and class-specific ma-ximum mean discrepancy for unsupervised domain adaptation[J].IEEE Transactions on Multimedia,2019,22(9):2420-2433. [19]HU L,KAN M,SHAN S,et al.Unsupervised domain adaptation with hierarchical gradient synchronization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2020:4043-4052. [20]LU Y,ZHU Q,ZHANG B,et al.Weighted correlation embedding learning for domain adaptation[J].IEEE Transactions on Image Processing,2022,31:5303-5316. [21]CHEN C,XIE W,HUANG W,et al.Progressive feature alignment for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2019:627-636. [22]WANG X,LI L,YE W,et al.Transferable attention for domain adaptation[C]//Proceedings of AAAI Conference on Artificial Intelligence.AAAI Press,2019:5345-5352. [26]ZHANG W,OUYANG W,LI W,et al.Collaborative and adversarial network for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2018:3801-3809. [24]ZHU Y,ZHUANG F,WANG J,et al.Deep subdomain adapta-tion network for image classification[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(4):1713-1722. [25]DENG Z,LUO Y,ZHU J.Cluster alignment with a teacher for unsupervised domain adaptation[C]//Proceedings of IEEE International Conference on Computer Vision.IEEE,2019:9944-9953. [26]WANG Q,BRECKON T.Unsupervised domain adaptation via structured prediction based selective pseudo-labeling[C]//Proceedings of AAAI Conference on Artificial Intelligence.AAAI Press,2020:6243-6250. [27]WANG M,DENG W.Cycle label-consistent networks for unsupervised domain adaptation[J].Neurocomputing,2021,422:186-199. [28]MORERIO P,VOLPI R,RAGONESI R,et al.Generative pseudo-label refinement for unsupervised domain adaptation[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision.IEEE,2020:3130-3139. [29]LITRICO M,DEL BUE A,MORERIO P.Guiding Pseudo-La-bels With Uncertainty Estimation for Source-Free Unsupervised Domain Adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2023:7640-7650. [30]CHU T,LIU Y,DENG J,et al.Denoised Maximum Classifier Discrepancy for Source-Free Unsupervised Domain Adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI Press,2022:472-480. [31]TIAN Y,KRISHNAN D,ISOLA P.Contrastive multiview co-ding[C]//Proceedings of European Conference on Computer Vision.Springer,2020:776-794. [32]KHOSLA P,TETERWAK P,WANG C,et al.Supervised contrastive learning[J].Advances in Neural Information Processing Systems,2020,33:18661-18673. [33]GE Y X,ZHU F,CHEN D,et al.Self-paced contrastive learning with hybrid memory for domain adaptive object re-id[J].Advances in Neural Information Processing Systems,2020,33:11309-11321. [34]THOTA M,LEONTIDIS G.Contrastive domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2021:2209-2218. [35]LIU W,FERSTL D,SCHULTER S,et al.Domain adaptationfor semantic segmentation via patch-wise contrastive learning[J].arXiv:2104.11056,2021. [36]GRETTON A,BORGWARDT K M,RASCH M J,et al.A kernel two-sample test[J].Journal of Machine Learning Research,2012,13(1):723-773. [37]HUANG J,GUAN D,XIAO A,et al.Category contrast for un-supervised domain adaptation in visual tasks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2022:1203-1214. [38]PAN S,YANG Q.A survey on transfer learning[J].IEEETransactions on Knowledge and Data Engineering,2010,22(10):1345-1359. [39]HOFFMAN J,TZENG E,PARK T,et al.Cycada:Cycle-con-sistent adversarial domain adaptation[C]//Proceedings of International Conference on Machine Learning.PMLR,2018:1989-1998. [40]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].IEEE,1998,86(11):2278-2324. [41]HULL J.A database for handwritten text recognition research[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(5):550-554. [42]NETZER Y,WANG T,COATES A,et al.Reading digits in na-tural images with unsupervised feature learning[J].NIPS Workshop on Deep Learning & Unsupervised Feature Learning.2011. [43]SAENLO K,KULIS B,FRITZ M,et al.Adapting visual category models to new domains[C]//Proceedings of European Conference on Computer Vision.Springer,2010:213-226. [44]VENKATESWARA H,EUSBIO J,CHAKRABORTY S,et al.Deep hashing network for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2017:5018-5027. [45]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].TheJournal of Machine Learning Research,2016,17(1):2096-2030. [46]TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial dis-criminative domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2017:7167-7176. [47]LONG M,CAO Y,WANG J,et al.Learning transferable fea-tures with deep adaptation networks[C]//Proceedings of International Conference on Machine Learning.PMLR,2015:97-105. [48]SAITO K,WATANABE K,USHIKU Y,et al.Maximum classifier discrepancy for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2018:3723-3732. [49]XIAO N,ZHANG L.Dynamic weighted learning for unsuper-vised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2021:15242-15251. [50]LIU H,LONG M,WANG J,et al.Transferable adversarialtraining:A general approach to adapting deep classifiers[C]//Proceedings of International Conference on Machine Learning.PMLR,2019:4013-4022. [51]LONG M,ZHU H,WANG J,et al.Deep transfer learning with joint adaptation networks[C]//Proceedings of International Conference on Machine Learning.PMLR,2017:2208-2217. [52]LI S,SONG S,WU C.Layer-wise domain correction for unsupervised domain adaptation[J].Frontiers of Information Technology Electronic Engineering,2018,19(1):91-103. [53]LIU M,TUZEL O.Coupled generative adversarial networks[J].Advances in Neural Information Processing Systems,2016,29:469-477. [54]XU R,LI G,YANG J,et al.Larger norm more transferable:An adaptive feature norm approach for unsupervised domain adaptation[C]//Proceedings of IEEE International Conference on Computer Vision.IEEE,2019:1426-1435. [55]LI M,ZHAI Y,LUO Y,et al.Enhanced transport distance for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2020:13936-13944. [56]DU Z,LI J,SU H,et al.Cross-domain gradient discrepancy mi-nimization for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2021:3937-3946. [57]WANG H,TIAN J,LI S,et al.Structure-conditioned adversarial learning for unsupervised domain adaptation[J].Neurocompu-ting,2022,497:216-226. [58]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer So-ciety,2016:770-778. |
|