计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400112-7.doi: 10.11896/jsjkx.230400112
曹岩, 朱真峰
CAO Yan, ZHU Zhenfeng
摘要: 在采用深度残差等神经网络模型解决图像分类任务时,特征提取过程损失的一些重要特征会影响模型的分类性能。神经网络“端到端”的学习模式带来的黑盒问题,也会限制其在诸多领域的应用和发展。另外,神经网络模型往往需要较长的训练时间。为了提高深度残差网络模型的分类效果和训练效率,引入了模型迁移方法和软阈值化方法,提出了DRSTN(Deep Residual Soft Thresholding Network)网络,并对此网络结构进行微调,生成了不同版本的DRSTN网络。DRSTN网络的性能得益于3个方面的有机整合:1)通过梯度加权类激活映射(Gradients-weighted Class Activation Mapping,Grad-CAM)方法对网络的特征提取进行可视化,根据可视化结果挑选进一步优化的模型;2)基于模型迁移,研究人员不必全新地搭建模型,可以直接在已有的模型上进行优化,能够节省大量训练时间;3)软阈值化作为非线性变换层嵌入到深度残差网络体系结构中,以消除样本中不相关的特征。实验结果表明,在相同训练条件下,DRSTN_KS(3*3)_RB(2:2:2)网络在CIFAR-10数据集上的分类精度相比SKNet-18,ResNet18和ConvNeXt_tiny网络分别提高了15.5%,8.8%和10.9%;该网络也具有一定的泛化性,在MNIST和Fashion MNIST数据集上能够达到快速的迁移效果,分类精度分别达到99.06%和93.15%。
中图分类号:
[1]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [2]HASSANZADEH T,ESSAM D,SARKER R.EvoDCNN:Anevolutionary deep convolutional neural network for image classification[J].Neurocomputing,2022,488:271-283. [3]FADLULLAH Z M,TANG F,MAO B,et al.State-of-the-art deep learning:Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems[J].IEEE Communications Surveys & Tutorials,2017,19(4):2432-2455. [4]ZHANG Z,GEIGER J,POHJALAINEN J,et al.Deep learning for environmentally robust speech recognition:An overview of recent developments[J].ACM Transactions on Intelligent Systems and Technology,2018,9(5):1-28. [5]DENG J,GUO J,XUE N,et al.Arcface:Additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4690-4699. [6]DU J,CHEN Y H,ZHANG L,et al.Low-power expression recognition based on improved deep residual network[J].Computer Science,2018,45(9):303-307. [7]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [8]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2015. [9]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9. [10]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [11]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [12]HASSANPOUR M,MALEK H.Document image classificationusing SqueezeNet convolutional neural network[C]//2019 5th Iranian Conference on Signal Processing and Intelligent Systems.IEEE,2019:1-4. [13]LI X,WANG W,HU X,et al.Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:510-519. [14]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2021. [15]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vi-sion transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [16]LIU Z,MAO H,WU C Y,et al.A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:11976-11986. [17]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2017:618-626. [18]PAN S J,YANG Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359. [19]ISOGAWA K,IDA T,SHIODERA T,et al.Deep shrinkageconvolutional neural network for adaptive noise reduction[J].IEEE Signal Processing Letters,2017,25(2):224-228. |
|