计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 263-271.doi: 10.11896/jsjkx.230600184
李静文, 叶琪, 阮彤, 林宇翩, 薛万东
LI Jingwen, YE Qi, RUAN Tong, LIN Yupian, XUE Wandong
摘要: 文本风格迁移是自然语言处理中的一项重要任务,其主要目的在于改变文本的风格属性,同时保留必要的语义信息。然而,在许多任务缺乏大规模平行语料库的情况下,现有的无监督方法存在文本多样性不足和语义一致性较差的问题。针对这些问题,文中提出了一种半监督的多阶段训练框架。该框架首先利用风格标注模型和掩码语言模型构造伪平行语料库,以有监督的方式引导模型学习多样性的迁移方式。其次,设计了对抗性相似奖励、Mis奖励和风格奖励,从未标记的数据中进行强化学习以增强模型的语义一致性、逻辑一致性和风格准确性。在基于YELP数据集的情感极性转换任务中,该方法的BLEURT分数提升了3.1%,Mis分数提升了2.5%,BLEU分数提升了9.5%;在基于GYAFC数据集的正式文体转换实验中,该方法的BLEURT分数提高了6.2%,BLEU分数提高了3%。
中图分类号:
[1]HU Z,LEE R K W,AGGARWAL C C,et al.Text style transfer:A review and experimental evaluation[J].ACM SIGKDD Explorations Newsletter,2022,24(1):14-45. [2]TOSHEVSKA M,GIEVSKA S.A review of text style transfer using deep learning[J].IEEE Transactions on Artificial Intelligence,2021,3(5):669-684. [3]JIN D,JIN Z,HU Z,et al.Deep learning for text style transfer:A survey[J].Computational Linguistics,2022,48(1):155-205. [4]LI J,JIA R,HE H,et al.Delete,retrieve,generate:a simple approach to sentiment and style transfer[J].arXiv:1804.06437,2018. [5]LYU Y,LIANG P P,PHAM H,et al.StylePTB:A Compositional Benchmark for Fine-grained Controllable Text Style Transfer[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:2116-2138. [6]KASHYAP A R,HAZARIKA D,KAN M Y,et al.So Different Yet So Alike! Constrained Unsupervised Text Style Transfer[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2022:416-431. [7]LIU D,FU J,ZHANG Y,et al.Revision incontinuous space:Unsupervised text style transfer without adversarial learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:8376-8383. [8]RILEY P,CONSTANT N,GUO M,et al.TextSETTR:Few-Shot Text Style Extraction and Tunable Targeted Restyling[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:3786-3800. [9]NARASIMHAN S,DEY S,DESARKAR M.Towards Robustand Semantically Organised Latent Representations for Unsupervised Text Style Transfer[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2022:456-474. [10]LUO F,LI P,ZHOU J,et al.A Dual Reinforcement Learning Framework for Unsupervised Text Style Transfer[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.International Joint Conferences on Artificial Intelligence Organization,2019. [11]LAI H,TORAL A,NISSIM M.Generic resources are what you need:Style transfer tasks without task-specific parallel training data[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:4241-4254. [12]LEE J.Stable Style Transformer:Delete and Generate Approachwith Encoder-Decoder for Text Style Transfer[C]//Proceedings of the 13th International Conference on Natural Language Ge-neration.2020:195-204. [13]LEE D,TIAN Z,XUE L,et al.Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:93-102. [14]WANG J,ZHANG R,CHEN J,et al.Text Style Transferringvia Adversarial Masking and Styled Filling[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:7654-7663. [15]PAPINENI K,ROUKOS S,WARD T,et al.Bleu:a method for automatic evaluation of machine translation[C]//Proceedings of the 40th annual meeting of the Association for Computational Linguistics.2002:311-318. [16]LIN C Y.ROUGE:A Package for Automatic Evaluation of summaries[C]//Proceedings of the Workshop on Text Summarization Branches Out(WAS 2004).2004. [17]LEWIS M,LIU Y,GOYAL N,et al.BART:Denoising Se-quence-to-Sequence Pre-training for Natural Language Generation,Translation,and Comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:7871-7880. [18]SELLAM T,DAS D,PARIKH A.BLEURT:Learning Robust Metrics for Text Generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:7881-7892. [19]BABAKOV N,DALE D,LOGACHEVA V,et al.A large-scale computational study of content preservation measures for text style transfer and paraphrase generation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics:Student Research Workshop.2022:300-321. [20]TOKPO E K,CALDERS T.Text Style Transfer for Bias Mitigation using Masked Language Modeling[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies:Student Research Workshop.2022:163-171. [21]REID M,ZHONG V.LEWIS:Levenshtein Editing for Unsuper-vised Text Style Transfer[C]//Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021.2021:3932-3944. [22]LI Z,QU L,XU Q,et al.Variational autoencoder with disentanglement priors for low-resource task-specific natural language generation[C]//2022 Conference on Empirical Methods in Na-tural Language Processing(EMNLP 2022).Association for Computational Linguistics,2022:10335-10356. [23]YI X,LIU Z,LI W,et al.Text style transfer via learning style instance supported latent space[C]//Proceedings of the Twenty-Ninth International Conference on International Joint Confe-rences on Artificial Intelligence.2021:3801-3807. [24]NOURIN.Text Style Transfer via Optimal Transport.[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.Abu Dhabi,United Arab Emi-rates:Association for Computational Linguistics,2022:2532-2541. [25]DENG M,WANG J,HSIEH C P,et al.RLPrompt:Optimizing Discrete Text Prompts with Reinforcement Learning[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:3369-3391. [26]LIU Z,CHEN N.Learning from Bootstrapping and StepwiseReinforcement Reward:A Semi-Supervised Framework for Text Style Transfer[C]//Findings of the Association for Computational Linguistics:NAACL 2022.2022:2633-2648. [27]KRISHNA K,WIETING J,IYYER M.Reformulating Unsupervised Style Transfer as Paraphrase Generation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:737-762. [28]LAFFERTY J,MCCALLUM A,PEREIRA F.Conditional random fields:Probabilistic models for segmenting and labeling sequence data[C]//ICML.2001. [29]CHEN K J,FEI Z Y,CHEN J Q,et al.A survey on text style transfer[J].Journal of Software,2022,33(12):20. [30]ZHAO J,KIM Y,ZHANG K,et al.Adversarially regularized autoencoders[C]//International Conference on Machine Lear-ning.PMLR,2018:5902-5911. [31]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2.2014:2672-2680. [32]HUANG Y,ZHU W,XIONG D,et al.Cycle-Consistent Adversarial Autoencoders for Unsupervised Text Style Transfer[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:2213-2223. [33]WILLIAMS R J.Simple statistical gradient-following algorithmsfor connectionist reinforcement learning[J].Machine Learning,1992,8:229-256. [34]RAO S,TETREAULT J.Dear sir or madam,may I introduce the GYAFC dataset:corpus,benchmarks and metrics for forma-lity style transfer[C]//Proceedings of the ACL.2018:129-140. [35]WOLF T,DEBUT L,SANH V,et al.Transformers:State-of-the-art natural language processing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:System Demonstrations.2020:38-45. [36]KIM Y.Convolutional Neural Networks for Sentence Classification[J].arXiv:1408.5882,2014. [37]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [38]HE J,WANG X,NEUBIG G,et al.A Probabilistic Formulationof Unsupervised Text Style Transfer[C]//International Confe-rence on Learning Representations.2019. [39]XU P,CHEUNG J C K,CAO Y.On variational learning of controllable representations for text without supervision[C]//International Conference on Machine Learning.PMLR,2020:10534-10543. [40]HUANG F,CHEN Z,WU C H,et al.NAST:A Non-Auto-regressive Generator with Word Alignment for Unsupervised Text Style Transfer[C]//Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021.2021:1577-1590. |
|