计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 333-344.doi: 10.11896/jsjkx.230500046

• 人工智能 • 上一篇    下一篇

基于RNN信息累积的动态多目标优化算法

程雪峰1, 董明刚1,2   

  1. 1 桂林理工大学信息科学与工程学院 广西 桂林 541006
    2 广西嵌入式技术与智能系统重点实验室 广西 桂林 541006
  • 收稿日期:2023-05-08 修回日期:2023-10-13 出版日期:2024-08-15 发布日期:2024-08-13
  • 通讯作者: 董明刚(d2015mg@qq.com)
  • 作者简介:(3030618003@qq.com)
  • 基金资助:
    国家自然科学基金(61563012)

Dynamic Multi-objective Optimization Algorithm Based on RNN Information Accumulation

CHENG Xuefeng1, DONG Minggang1,2   

  1. 1 School of Information Science and Engineering,Guilin University of Technology,Guilin,Guangxi 541006,China
    2 Guangxi Key Laboratory of Embedded Technology and Intelligent System,Guilin,Guangxi 541006,China
  • Received:2023-05-08 Revised:2023-10-13 Online:2024-08-15 Published:2024-08-13
  • About author:CHENG Xuefeng,born in 1996,postgraduate.His main research interest is dynamic multi-objective optimization algorithm based on evolutionary computing.
    DONG Minggang,born in 1977,Ph.D.His main research interests include intelligent computing,multi-objective optimization and machine learning.
  • Supported by:
    National Natural Science Foundation of China(61563012).

摘要: 动态多目标优化问题广泛存在于现实生活中,在环境发生变化后,进化算法需具备快速收敛、快速追踪帕累托最优前沿和维持多样性的能力。对于环境变化程度严重且变化频繁的情况,传统的预测方法无法有效获得帕累托最优前沿解。针对该问题,提出了一种基于循环神经网络(Recurrent Neural Networks,RNN)信息累积的动态多目标优化算法(IA-RNN)。首先,提出了一种基于RNN信息累积的非线性预测方法,利用RNN递归进行信息累积,提高了历史信息利用率,增强了预测的能力。其次,设计了一种基于个体的线性预测方法,利用参数矩阵对个体线性变化进行预测。线性预测与RNN非线性预测协同进化,可快速追踪帕累托最优前沿。最后,设计了一种基于最小二乘法的参数修正策略,通过当前环境的近似帕累托最优前沿解反向指导参数修正,减小了误差堆积的影响。将IA-RNN与5种代表性动态多目标优化算法在14个DF基准测试问题上进行比较。实验证明,IA-RNN算法的收敛性和多样性更优。

关键词: 动态多目标, 进化算法, 预测, 循环神经网络, 信息累积

Abstract: Dynamic multi-objective optimization problems exist widely in real life.After the environment changes,it is necessary for the evolutionary algorithm to have the abilities of fast convergence,fast tracking Pareto optimal frontier and maintaining diversity.For severe and frequent environmental changes,the traditional forecasting method can not effectively obtain Pareto optimal frontier solution.For this problem,a dynamic multi-objective optimization algorithm based on recurrent neural networks information accumulation(IA-RNN) is proposed.Firstly,a nonlinear prediction method based on RNN information accumulation is proposed,which uses RNN recursion for information accumulation,improves the utilization rate of historical information and enhances the ability of prediction.Secondly,a linear prediction method based on individual is designed,which uses parameter matrix to predict the linear changes of individual.Linear prediction and RNN nonlinear prediction co-evolve,which can quickly track the Pareto optimal frontier.Finally,a parameter correction strategy based on the least square method is designed to guide the parameter correction by the approximate Pareto optimal frontier solution in the current environment,which reduces the influence of error accumulation.IA-RNN is compared with five representative dynamic multi-objective optimization algorithms on 14 DF benchmark problems.Experiments show that the IA-RNN algorithm has better convergence and diversity.

Key words: Dynamic multi-objective, Evolutionary algorithm, Forecast, Recurrent neural networks, Information accumulation

中图分类号: 

  • TP301
[1]WANG D J,LIU F,JIN Y.A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling[J].Computers & Operations Research,2017,79:279-290.
[2]GUO Y N,CHENG J,LUO S,et al.Robust dynamic multi-objective vehicle routing optimization method[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2017,15(6):1891-1903.
[3]MASHWANI W K,SALHI A.Multiobjective evolutionary algorithm based on multimethod with dynamic resources allocation[J].Applied Soft Computing,2016,39:292-309.
[4]QIAO J,ZHANG W.Dynamic multi-objective optimization control for wastewater treatment process[J].Neural Computing and Applications,2018,29:1261-1271.
[5]HUANG L,SUH I H,ABRAHAM A.Dynamic multi-objective optimization basedon membrane computing for control of time-varying unstable plants[J].Information Sciences,2011,181(11):2370-2391.
[6]DED K,RAO N U B,KARTHIK S.Dynamic multi-objective optimization and decision-making using modified NSGA-II:A case study on hydro-thermal power scheduling[C]//4th International Conference Evolutionary Multi-Criterion Optimization(EMO 2007).Matsushima,Japan:Springer Berlin Heidelberg,2007:803-817.
[7]JIANG S,YANG S.A steady-state and generational evolutio-nary algorithm for dynamic multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2016,21(1):65-82.
[8]ZHANG K,SHEN C,LIU X,et al.Multiobjective evolutionstrategy for dynamic multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2020,24(5):974-988.
[9]PENG Z,ZHENG J,ZOU J,et al.Novel prediction and memory strategies for dynamic multiobjective optimization[J].Soft Computing,2015,19:2633-2653.
[10]LIANG Z,ZHENG S,ZHU Z,et al.Hybrid of memory and prediction strategies for dynamic multiobjective optimization[J].Information Sciences,2019,485:200-218.
[11]ZHOU A,JIN Y,ZHANG Q.A population prediction strategy for evolutionary dynamic multiobjective optimization[J].IEEE Transactions on Cybernetics,2013,44(1):40-53.
[12]LI Q,ZOU J,YANG S,et al.A predictive strategy based on special points for evolutionary dynamic multi-objective optimization[J].Soft Computing,2019,23:3723-3739.
[13]LIANG Z P,LI H C,WANG Z Q,et al.Dynamic multi-objective evolutionary algorithm with adaptive change response [J].Acta Automatica Sinica,2023,49(8):1688-1706.
[14]SUN H,CAO A,HU Z,et al.A novelquantile-guided dual prediction strategies for dynamic multi-objective optimization[J].Information Sciences,2021,579:751-775.
[15]ZHANG H,DING J,JIANG M,et al.Inverse gaussian process modeling for evolutionary dynamic multiobjective optimization[J].IEEE Transactions on Cybernetics,2021,52(10):11240-11253.
[16]LIU R,CHEN Y,MA W,et al.A novel cooperative coevolu-tionary dynamic multi-objective optimization algorithm using a new predictive model[J].Soft Computing,2014,18:1913-1929.
[17]MA X,YANG J,SUN H,et al.Multiregional co-evolutionary algorithm for dynamic multiobjective optimization[J].Information Sciences,2021,545:1-24.
[18]JIANG M,HUNAG Z,QIU L,et al.Transfer learning-based dynamic multiobjective optimization algorithms[J].IEEE Transactions on Evolutionary Computation,2017,22(4):501-514.
[19]ELMAN J L.Finding structure in time[J].Cognitive Science,1990,14(2):179-211.
[20]RAMBABU R,VADAKKEPAT P,TAN K C,et al.A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization[J].IEEE Transactions on Cybernetics,2019,50(12):5099-5112.
[21]DEB K,PRATAP A,AGARWAL S,et al.A fast and elitistmultiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[22]GONG X,ZHANG T,CHEN C L P,et al.Research review for broad learning system:Algorithms,theory,and applications[J].IEEE Transactions on Cybernetics,2022,52:8922-8950.
[23]WANG H,SONG G.Innovative NARX recurrent neural net-work model for ultra-thin shape memory alloy wire[J].Neurocomputing,2014,134:289-295.
[24]MA X M,YANG J M,SUN H,et al.Dynamic multi-objective optimization algorithm based on multi-region center point prediction [J].Control and Decision,2022,37(10):2477-2486.
[25]LI Z,TANAKA G.Multi-reservoir echo state networks with sequence resampling for nonlinear time-series prediction[J].Neurocomputing,2022,467:115-129.
[26]JIANG S,YANG S,YAO X,et al.Benchmark Functions for the CEC′2018Competition on Dynamic Multiobjective Optimization[R].Newcastle University,2018.
[27]ZHAO Q,YAN B,SHI Y,et al.Evolutionary dynamic multiobjective optimization via learning from historical search process[J].IEEE Transactions on Cybernetics,2021,52(7):6119-6130.
[28]ZHOU A,JIN Y,ZHANG Q.A population prediction strategy for evolutionary dynamic multiobjective optimization[J].IEEE Transactions on Cybernetics,2013,44(1):40-53.
[29]SIERRA M R,COELLO C A.Improving PSO-based multi-objective optimization using crowding,mutation and∈-dominance [C]//Evolutionary Multi-Criterion Optimization:Third International Conference(EMO 2005).Berlin Heidelberg:Springer,2005:505-519.
[30]WILCOXON F.Individual comparisons by ranking methods[M].New York:Springer,1992:196-202.
[31]TIAN Y,CHENG R,ZHANG X,et al.PlatEMO:A MATLAB platform for evolutionary multi-objective optimization[educational forum][J].IEEE Computational Intelligence Magazine,2017,12(4):73-87.
[32]FRIEDMAN M.The use of ranks to avoid the assumption ofnormality implicit in the analysis of variance[J].Journal of the American Statistical Association,1937,32(200):675-701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!