计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800119-7.doi: 10.11896/jsjkx.230800119
翟运开1,2,3, 乔正文1, 乔岩1
ZHAI Yunkai1,2,3, QIAO Zhengwen1, QIAO Yan1
摘要: 为更准确地预测远程会诊需求量,提高远程会诊资源配置效率,文中引入多元回归分析(Multiple Linear Regression)和注意力机制来优化长短期记忆网络(LSTM)。首先,根据远程会诊需求中存在的假期效应生成假期指标,通过多元回归分析选取显著性高的指标作为模型输入,然后根据长短期记忆网络学习输入指标的内部复杂映射关系,利用注意力机制对指标分配不同权重,最后根据权重和LSTM隐藏层输入预测结果。基于国家远程医疗中心(NTCC)的实际历史会诊数据,研究MLR-Attention-LSTM的预测性能,并比较其与整合移动平均自回归模型、支持向量机、K近邻、BP神经网络和LSTM神经网络5种模型的预测效果。结果表明,优化后的LSTM模型预测精度最高。进一步地,探究假期指标对模型性能的影响,结果表明假期指标的输入可以进一步提高模型的预测精度,验证了MLR-Attention-LSTM和假期相关变量输入在远程会诊需求预测领域的可行性与适用性,为远程医学中心实际应用提供了理论支撑和实践指导。
中图分类号:
[1]ZHAO J,CUI Z Y,CAI Y L,et al.Analysis on the Efficiency Optimization of Resource Allocation Based on Telemedicine[J].Chinese Health Economics,2014,33(10):5-7. [2]CHEN X,WANG J.Matching Method for Medical Service Supply and Demand Considering Bodies’ Psychological Behavior Based on Intelligent Platform[J].Operations Research and Ma-nagement Science,2018,27(10):125-132. [3]DONG T S,ZHANG M K.Practice and Thinking of Using Appointment Service of Hospital Outpatient in Telemedicine Consultation Scheduling Work[J].Chinese Hospital Management,2017,37(1):40-41. [4]LU W,GAO P,ZHAI Y K.An Adaptive RecommendationMethod for Telemedicine Specialists with Feedback Adjustment[J].Journal of Systems & Management,2023,32(5):960-975. [5]PANDA S K,MOHANTY S N.Time Series Forecasting andModelling of Food Demand Supply Chain based on Regressors Analysis[J].IEEE Access,2023,11:42679-42700. [6]WANG Q,JIANG H,QIU M,et al.TGAE:Temporal GraphAutoencoder for Travel Forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(8):8529-8541. [7]RUNGE J,ZMEUREANU R.Deep learning forecasting forelectric demand applications of cooling systems in buildings[J].Advanced Engineering Informatics,2022,53:101674. [8]XUE G,LIU S,REN L,et al.Forecasting hourly attractiontourist volume with search engine and social media data for decision support[J].Information Processing & Management,2023,60(4):103399. [9]BUCKINGHAM-JEFFERY E,MORBEY R,HOUSE T,et al.Correcting for day of the week and public holiday effects:improving a national daily syndromic surveillance service for detecting publ ic health threats[J].BMC Public Health,2017,17(1):1-9. [10]OUYANG H B,HUANG K,YAN H J.Prediction of Financial Time Series Based on LSTM Neural Network[J].Chinese Journal of Management Science,2020,28(4):27-35. [11]CHEN W J,YU L,LI J L.Forecasting Teleconsultation Demand with an Ensemble Attention-Based Bidirectional Long Short-Term Memory Model[J].International Journal of Computa-tional Intelligence Systems,2021,14(1):821-833. [12]TANG Z P,WU J C,ZAHNG T T,et al.An EEMD-LSTM Model Based Research on Early Warning of the Systematic Risk in China Insurance Industry[J].Management Review,2022,34(9):27-34. [13]LIU Y M,LI Y,ZHAO Z Y.Forecasting Price Trend of Constituent Stocks Using RF-LSTM Model Based on Feature Selection[J].Statistics & Decision,2021,37(1):157-160. [14]LIU S,YAO E.Holiday passenger flow forecasting based on the modified least-square support vector machine for the metro system[J].Journal of Transportation Engineering,Part A-Systems,2017,143(2):1-8. [15]YAO E,HONG J,PAN L,et al.Forecasting Passenger Flow Distribution on Holidays for Urban Rail Transit Based on Destination Choice Behavior Analysis[J].Journal of Advanced Transportation,2021,2021:1-13. [16]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780. [17]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2015. |
|