计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 103-111.doi: 10.11896/jsjkx.230700007
涂远杰1, 程宝雷1, 王岩1, 韩月娟2, 樊建席1
TU Yuanjie1, CHENG Baolei1, WANG Yan1, HAN Yuejuan2, FAN Jianxi1
摘要: 故障诊断在维持多处理器系统的可靠性中起到了至关重要的作用,而诊断度是系统诊断能力的一个重要度量参数。除经典诊断度外还有条件诊断度,如g-好邻条件诊断度、g-额外条件诊断度等。其中g-好邻条件诊断度是在每个无故障顶点至少有g个无故障邻点的条件下定义的一种条件诊断度,g-额外条件诊断度是在每个无故障分支包含超过g个顶点的条件下定义的一种条件诊断度。故障诊断需要在特定的诊断模型下进行,如PMC模型、对称PMC模型等。对称PMC模型是在PMC模型的基础上通过添加两个假设而提出的一种新的诊断模型。n维超立方体因具有多种优越性质而被研究者们广泛研究。目前有不少在PMC模型下的诊断度研究,但缺乏在对称PMC模型下的诊断度研究。文中首先证明了超立方体在对称PMC模型下的g-好邻条件诊断度的上界和下界,当n≥4且0≤g≤n-4时上界为2g+1(n-g-1)+2g-1,当g≥0且n≥max{g+4,2g+1-2-g-g-1}时下界为(2n-2g+1+1)2g-1+(n-g)2g-1-1。还证明了超立方体在对称PMC模型下的g-额外条件诊断度的上界和下界,当n≥4且0≤g≤n-4时上界为2n(g+1)-5g-2C2g-2,当n≥4且$0 \leqslant g \leqslant \min \left\{n-4,\left\lfloor\frac{2}{3} n\right\rfloor\right\}$时下界为$\frac{3}{2} n(g+1)-g-\frac{5}{2} C_{g+1}^{2}-1$。最后通过模拟实验验证了相关理论结果的正确性。
中图分类号:
[1]SAAD Y,SCHULTZ M H.Topological properties of hyper-cubes[J].IEEE Transactions on Computers,1988,37(7):867-872. [2]CONDON P,DIAZ A E,GIRAO A,et al.Hamiltonicity of random subgraphs of the hypercube[C]//Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms(SODA).Society for Industrial and Applied Mathematics,2021:889-898. [3]ZHANG S,LIANG D,CHEN L,et al.The component diagno-sability of hypercubes with large-scale faulty nodes[J].The Computer Journal,2022,65(5):1129-1143. [4]WEI C C,HSIEH S Y.Random and conditional (t,k)-diagnosis of hypercubes[J].Algorithmica,2017,79(3):625-644. [5]YANG W,MENG J.Extraconnectivity of hypercubes[J].Applied Mathematics Letters,2009,22(6):887-891. [6]PREPARATA F P,METZE G,CHIEN R T.On the connection assignment problem of diagnosable systems[J].IEEE Transactions on Electronic Computers,1967,EC-16(6):848-854. [7]MAENG J,MALEK M.A comparison connection assignmentfor self-diagnosis of multiprocessor systems[C]//Proceedings-11th Annual International Symposium on Fault-Tolerant Computing.IEEE Computer Society,1981:173-175. [8]BARSI F,GRANDONI F,MAESTRINI P.A theory of diagno-sability of digital systems[J].IEEE Transactions on Compu-ters,1976,25(6):585-593. [9]PENG S L,LIN C K,TAN J J M,et al.The g-good-neighbor conditional diagnosability of hypercube under PMC model[J].Applied Mathematics and Computation,2012,218(21):10406-10412. [10]DING T,XU M.Relationship between diagnosability and non-inclusive diagnosability of triangle-free connected graphs under the PMC model[J].Theoretical Computer Science,2023,944:113676. [11]YUAN J,QIAO H,LIU A.The upper and lower bounds of Rg-conditional diagnosability of networks[J].Information Proces-sing Letters,2022,176:106248. [12]WEI Y,XU M.Conditional diagnosability of Cayley graphs ge-nerated by wheel graphs under the PMC model[J].Theoretical Computer Science,2021,849:163-172. [13]MA M J,XU M,DING T T,et al.The non-inclusion diagno-sability of hypercubes under the PMC model[J].Journal of the Operations Research Society of China,2022,6:1-7. [14]ZHU Q,THULASIRAMAN K,NAIK K,et al.Symmetric PMC model of diagnosis,b-matchings in graphs and fault identification in t-diagnosable systems[J].Theoretical Computer Science,2021,891:35-49. [15]HAKIMI S L,AMIN A T.Characterization of connection as-signment of diagnosable systems[J].IEEE Transactions on Computers,1974,23(1):86-88. [16]SULLIVAN G.A polynomial time algorithm for fault diagno-sability[C]//IEEE 25th Annual Symposium on Foundations of Computer Science.IEEE Computer Society Press,1984:148-156. [17]LAI P L,TAN J J M,CHANG C P,et al.Conditional diagnosability measures for large multiprocessor systems[J].IEEE Transactions on Computers,2005,54(2):165-175. [18]LIU H,HU X,GAO S.The g-good neighbor conditional diagnosability of twisted hypercubes under the PMC and MM* model[J].Applied Mathematics and Computation,2018,332:484-492. [19]WEI Y L,XU M.The g-good-neighbor conditional diagnosability of locally twisted cubes[J].Journal of the Operations Research Society of China,2018,6(2):333-347. [20]GUO J,LI D,LU M.The g-good-neighbor conditional diagno-sability of the crossed cubes under the PMC and MM* model[J].Theoretical Computer Science,2019,755:81-88. [21]JUN Y,AIXIA L,XUE M,et al.The g-good-neighbor conditional diagnosability of k-ary n-cubes under the PMC model and MM* model[J].IEEE Transactions on Parallel and Distributed Systems,2014,26(4):1165-1177. [22]ZHANG S,YANG W.The g-extra conditional diagnosabilityand sequential t/k-diagnosability of hypercubes[J].InternationalJournal of Computer Mathematics,2016,93(3):482-497. [23]WANG X,HUANG L,SUN Q,et al.The g-extra diagnosability of the balanced hypercube under the PMC and MM* model[J].The Journal of Supercomputing,2022,78(5):6995-7015. [24]CHENG E,QIU K,SHEN Z.On the g-extra diagnosability of enhanced hypercubes[J].Theoretical Computer Science,2022,921:6-19. [25]WANG S,MA X.The g-extra connectivity and diagnosability of crossed cubes[J].Applied Mathematics and Computation,2018,336:60-66. [26]BONDY J A,MURTY U S R.Graph theory with applications[M].London:Macmillan,1976. [27]LI X,LIN C K,FAN J,et al.Relationship between extra connectivity and component connectivity in networks[J].The Computer Journal,2021,64(1):38-53. [28]DAHBURA A T,MASSON G M.An O(n2.5) fault identification algorithm for diagnosable systems[J].IEEE Transactions on Computers,1984,33(6):486-492. [29]LEIGHTON F T.Introduction to parallel algorithms and ar-chitectures:arrays. trees. hypercubes[M].San Mateo:Else-vier,1992. [30]LATIFI S,HEGDE M,NARAGHI-POUR M.Conditional connectivity measures for large multiprocessor systems[J].IEEE Transactions on Computers,1994,43(2):218-222. [31]OH A D,CHOI H A.Generalized measures of fault tolerance in n-cube networks[J].IEEE Transactions on Parallel and Distri-buted Systems,1993,4(6):702-703. [32]ZHU Q,XU J M.On restricted edge connectivity and extra edge connectivity of hypercubes and folded hypercubes[J].Journal of University of Science and Technology of China,2006,36(3):249-253. |
|