计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 103-111.doi: 10.11896/jsjkx.230700007

• 高性能计算 • 上一篇    下一篇

超立方体在对称PMC模型下的g-好邻条件诊断度和g-额外条件诊断度

涂远杰1, 程宝雷1, 王岩1, 韩月娟2, 樊建席1   

  1. 1 苏州大学计算机科学与技术学院 江苏 苏州 215006
    2 苏州大学信息化建设与管理中心 江苏 苏州 215006
  • 收稿日期:2023-07-01 修回日期:2023-11-20 出版日期:2024-09-15 发布日期:2024-09-10
  • 通讯作者: 樊建席(jxfan@suda.edu.cn)
  • 作者简介:(20214227047@stu.suda.edu.cn)
  • 基金资助:
    国家自然科学基金(62172291,62272333)

g-Good-Neighbor Conditional Diagnosability and g-Extra Conditional Diagnosability of Hypercubes Under Symmetric PMC Model

TU Yuanjie1, CHENG Baolei1, WANG Yan1, HAN Yuejuan2, FAN Jianxi1   

  1. 1 School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China
    2 Center of Information Development and Management,Soochow University,Suzhou,Jiangsu 215006,China
  • Received:2023-07-01 Revised:2023-11-20 Online:2024-09-15 Published:2024-09-10
  • About author:TU Yuanjie,born in 1999,postgra-duate,is a member of CCF(No.J1792G).His main research interests include parallel and distributed systems,and graph algorithms.
    FAN Jianxi,born in 1965,Ph.D,professor,Ph.D supervisor.His main research interests include parallel and distributed systems,computer networks and graph algorithms.
  • Supported by:
    National Natural Science Foundation of China(62172291,62272333).

摘要: 故障诊断在维持多处理器系统的可靠性中起到了至关重要的作用,而诊断度是系统诊断能力的一个重要度量参数。除经典诊断度外还有条件诊断度,如g-好邻条件诊断度、g-额外条件诊断度等。其中g-好邻条件诊断度是在每个无故障顶点至少有g个无故障邻点的条件下定义的一种条件诊断度,g-额外条件诊断度是在每个无故障分支包含超过g个顶点的条件下定义的一种条件诊断度。故障诊断需要在特定的诊断模型下进行,如PMC模型、对称PMC模型等。对称PMC模型是在PMC模型的基础上通过添加两个假设而提出的一种新的诊断模型。n维超立方体因具有多种优越性质而被研究者们广泛研究。目前有不少在PMC模型下的诊断度研究,但缺乏在对称PMC模型下的诊断度研究。文中首先证明了超立方体在对称PMC模型下的g-好邻条件诊断度的上界和下界,当n≥40≤g≤n-4时上界为2g+1(n-g-1)+2g-1,当g≥0n≥max{g+4,2g+1-2-g-g-1}时下界为(2n-2g+1+1)2g-1+(n-g)2g-1-1。还证明了超立方体在对称PMC模型下的g-额外条件诊断度的上界和下界,当n≥40≤g≤n-4时上界为2n(g+1)-5g-2C2g-2,当n≥4且$0 \leqslant g \leqslant \min \left\{n-4,\left\lfloor\frac{2}{3} n\right\rfloor\right\}$时下界为$\frac{3}{2} n(g+1)-g-\frac{5}{2} C_{g+1}^{2}-1$。最后通过模拟实验验证了相关理论结果的正确性。

关键词: 互连网络, 超立方体, 系统级诊断, 对称PMC模型, 条件诊断度

Abstract: Fault diagnosis plays a very important role in maintaining the reliability of multiprocessor systems,and the diagno-sability is an important measure of the diagnosis capability of the system.Except for the traditional diagnosability,there are also conditional diagnosability,such as g-good-neighbor conditional diagnosability,g-extra conditional diagnosability,etc.Where g-good-neighbor conditional diagnosability is defined under the condition that every fault-free vertex has at least g fault-free neighbors,and g-extra conditional diagnosability is defined under the condition that every fault-free component contains more than g vertices.Fault diagnosis needs to be performed under a specific diagnosis model,such as PMC model,symmetric PMC model,in which the symmetric PMC model is a new diagnosis model proposed by adding two assumptions to the PMC model.The n-dimensional hypercube has many excellent properties,so it has been widely studied by researchers.At present,there are a number of diagnosability studies under the PMC models,but there is a lack of diagnosability studies under the symmetric PMC models.This paper first investigates the upper and lower bounds for the g-good-neighbor conditional diagnosability of hypercubes under the symmetric PMC model,with an upper bound of 2g+1(n-g-1)+2g-1 when n≥4 and 0≤g≤n-4 and a lower bound of (2n-2g+1+1)2g-1+(n-g)2g-1-1 when g≥0 and n≥max{g+4,2g+1-2-g-g-1}.Also study the upper and lower bounds for the g-extra conditional diagnosability of hypercubes under the symmetric PMC model,the upper bound is 2n(g+1)-5g-2C2g-2 when n≥4 and 0≤g≤n-4,and the lower bound is$\frac{3}{2} n(g+1)-g-\frac{5}{2} C_{g+1}^{2}-1$ when n≥4 and $0 \leqslant g \leqslant \min \left\{n-4,\left\lfloor\frac{2}{3} n\right\rfloor\right\}$.Finally,the correctness of the relevant theoretical conclusions is verified by simulation experiments.

Key words: Interconnection network, Hypercube, System level diagnosis, Symmetric PMC model, Conditional diagnosability

中图分类号: 

  • TP393
[1]SAAD Y,SCHULTZ M H.Topological properties of hyper-cubes[J].IEEE Transactions on Computers,1988,37(7):867-872.
[2]CONDON P,DIAZ A E,GIRAO A,et al.Hamiltonicity of random subgraphs of the hypercube[C]//Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms(SODA).Society for Industrial and Applied Mathematics,2021:889-898.
[3]ZHANG S,LIANG D,CHEN L,et al.The component diagno-sability of hypercubes with large-scale faulty nodes[J].The Computer Journal,2022,65(5):1129-1143.
[4]WEI C C,HSIEH S Y.Random and conditional (t,k)-diagnosis of hypercubes[J].Algorithmica,2017,79(3):625-644.
[5]YANG W,MENG J.Extraconnectivity of hypercubes[J].Applied Mathematics Letters,2009,22(6):887-891.
[6]PREPARATA F P,METZE G,CHIEN R T.On the connection assignment problem of diagnosable systems[J].IEEE Transactions on Electronic Computers,1967,EC-16(6):848-854.
[7]MAENG J,MALEK M.A comparison connection assignmentfor self-diagnosis of multiprocessor systems[C]//Proceedings-11th Annual International Symposium on Fault-Tolerant Computing.IEEE Computer Society,1981:173-175.
[8]BARSI F,GRANDONI F,MAESTRINI P.A theory of diagno-sability of digital systems[J].IEEE Transactions on Compu-ters,1976,25(6):585-593.
[9]PENG S L,LIN C K,TAN J J M,et al.The g-good-neighbor conditional diagnosability of hypercube under PMC model[J].Applied Mathematics and Computation,2012,218(21):10406-10412.
[10]DING T,XU M.Relationship between diagnosability and non-inclusive diagnosability of triangle-free connected graphs under the PMC model[J].Theoretical Computer Science,2023,944:113676.
[11]YUAN J,QIAO H,LIU A.The upper and lower bounds of Rg-conditional diagnosability of networks[J].Information Proces-sing Letters,2022,176:106248.
[12]WEI Y,XU M.Conditional diagnosability of Cayley graphs ge-nerated by wheel graphs under the PMC model[J].Theoretical Computer Science,2021,849:163-172.
[13]MA M J,XU M,DING T T,et al.The non-inclusion diagno-sability of hypercubes under the PMC model[J].Journal of the Operations Research Society of China,2022,6:1-7.
[14]ZHU Q,THULASIRAMAN K,NAIK K,et al.Symmetric PMC model of diagnosis,b-matchings in graphs and fault identification in t-diagnosable systems[J].Theoretical Computer Science,2021,891:35-49.
[15]HAKIMI S L,AMIN A T.Characterization of connection as-signment of diagnosable systems[J].IEEE Transactions on Computers,1974,23(1):86-88.
[16]SULLIVAN G.A polynomial time algorithm for fault diagno-sability[C]//IEEE 25th Annual Symposium on Foundations of Computer Science.IEEE Computer Society Press,1984:148-156.
[17]LAI P L,TAN J J M,CHANG C P,et al.Conditional diagnosability measures for large multiprocessor systems[J].IEEE Transactions on Computers,2005,54(2):165-175.
[18]LIU H,HU X,GAO S.The g-good neighbor conditional diagnosability of twisted hypercubes under the PMC and MM* model[J].Applied Mathematics and Computation,2018,332:484-492.
[19]WEI Y L,XU M.The g-good-neighbor conditional diagnosability of locally twisted cubes[J].Journal of the Operations Research Society of China,2018,6(2):333-347.
[20]GUO J,LI D,LU M.The g-good-neighbor conditional diagno-sability of the crossed cubes under the PMC and MM* model[J].Theoretical Computer Science,2019,755:81-88.
[21]JUN Y,AIXIA L,XUE M,et al.The g-good-neighbor conditional diagnosability of k-ary n-cubes under the PMC model and MM* model[J].IEEE Transactions on Parallel and Distributed Systems,2014,26(4):1165-1177.
[22]ZHANG S,YANG W.The g-extra conditional diagnosabilityand sequential t/k-diagnosability of hypercubes[J].InternationalJournal of Computer Mathematics,2016,93(3):482-497.
[23]WANG X,HUANG L,SUN Q,et al.The g-extra diagnosability of the balanced hypercube under the PMC and MM* model[J].The Journal of Supercomputing,2022,78(5):6995-7015.
[24]CHENG E,QIU K,SHEN Z.On the g-extra diagnosability of enhanced hypercubes[J].Theoretical Computer Science,2022,921:6-19.
[25]WANG S,MA X.The g-extra connectivity and diagnosability of crossed cubes[J].Applied Mathematics and Computation,2018,336:60-66.
[26]BONDY J A,MURTY U S R.Graph theory with applications[M].London:Macmillan,1976.
[27]LI X,LIN C K,FAN J,et al.Relationship between extra connectivity and component connectivity in networks[J].The Computer Journal,2021,64(1):38-53.
[28]DAHBURA A T,MASSON G M.An O(n2.5) fault identification algorithm for diagnosable systems[J].IEEE Transactions on Computers,1984,33(6):486-492.
[29]LEIGHTON F T.Introduction to parallel algorithms and ar-chitectures:arrays. trees. hypercubes[M].San Mateo:Else-vier,1992.
[30]LATIFI S,HEGDE M,NARAGHI-POUR M.Conditional connectivity measures for large multiprocessor systems[J].IEEE Transactions on Computers,1994,43(2):218-222.
[31]OH A D,CHOI H A.Generalized measures of fault tolerance in n-cube networks[J].IEEE Transactions on Parallel and Distri-buted Systems,1993,4(6):702-703.
[32]ZHU Q,XU J M.On restricted edge connectivity and extra edge connectivity of hypercubes and folded hypercubes[J].Journal of University of Science and Technology of China,2006,36(3):249-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!